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In this paper we describe a fast parallel method for solving highly ill-conditioned
saddle-point systems arising from mixed finite element simulations of stochastic
partial differential equations (PDEs) modelling flow in heterogeneous media. Each
realisation of these stochastic PDEs requires the solution of the linear first-order
velocity—pressure system comprising Darcy’s law coupled with an incompressibil-
ity constraint. The chief difficulty is that the permeability may be highly variable,
especially when the statistical model has a large variance and a small correlation
length. For reasonable accuracy, the discretisation has to be extremely fine. We solve
these problems by first reducing the saddle-point formulation to a symmetric posi-
tive definite (SPD) problem using a suitable basis for the space of divergence-free
velocities. The reduced problem is solved using parallel conjugate gradients precon-
ditioned with an algebraically determined additive Schwarz domain decomposition
preconditioner. The result is a solver which exhibits a good degree of robustness with
respect to the mesh size as well as to the variance and to physically relevant values of
the correlation length of the underlying permeability field. Numerical experiments
exhibit almost optimal levels of parallel efficiency. The domain decomposition solver
(DOUG, http://www.maths.bath.ac.uk/ parsoft) used here not only is ap-
plicable to this problem but can be used to solve general unstructured finite element
systems on a wide range of parallel architectures.2000 Academic Press
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1. INTRODUCTION

In this paper we describe, analyse, and implement a parallel algorithm for use in
numerical simulation of stochastic partial differential equations (PDEs) modelling groul
water flow in heterogeneous media. The classical equations governing this applicatio
the first-order system consisting Bfrcy’s law,

G+ (k/uw)VPr =0, (1.1)
coupled with themass conservation lagw
V.§=0, (1.2)

subjectto appropriate boundary conditions. Histhevelocity(more precisely the specific
discharge), andPr is theresidual pressureThe actual pressure Br — pgz, wherez is
the fluid height,o is the density, ang is the acceleration due to gravity. The functi@ans
andPg are both to be determined from (1.1) and (1.2), vidtthenoting permeability and
denoting the dynamic viscosity.

In contrast to the classical determinisic modklsijll, in the probabilistic case considered
here, be modelled using a Gaussian random field. The numerical treatment of this prol
then involves the solution of (1.1) and (1.2) for many diffenexalisationsof k and subse-
quent computation of statistical properties of the resulting velocity and/or pressure fie
In this paper we describe a fast parallel method for the solution of (1.1) and (1.2)kigen
any typical realisation. Although we do not carrry out here any statistical analysis invc
ing multiple simulations, a prime motivation of our work is to obtain a numerical metht
which is sufficiently accurate and efficient to make such a statistical analysis possible.
reasons described below, a typical simulation of (1.1) and (1.2) will involve the soluti
of very large, highly ill-conditioned indefinite linear systems and the fast method propo.
here constitutes an essential tool which can be used in later statistical analyses. Becal
applications in waste management and in the oil industry, there is a strong technolo
motivation for such a tool.

The Gaussian random fields which determirege characterised by a pair of parameter
(02, 1), wheres 2 is thevarianceandy is thelength scal@ver which the field is correlated. In
addition, the discrete model also dependsahe number of degrees of freedom in the grid
althoughn andn are typically related to each other. Extreme variations in these parame
contribute to the ill-conditioning of the discretisation of (1.1) and (1.2), and a key test for ¢
algorithm is whether it behaves robustly when subjected to variations in these parame

It is known that any realisation of the Gaussian random kefdH6Ider continuous, but
not in general differentiable, and so the resulting velocity and pressure fields have only
regularity throughout the domain. Since this irregularity is global, it cannot be compens:
for by local mesh refinement, and the only known way to achieve acceptable accurac
these problems is to use low-order approximation on a mesh which is (uniformly) as fin
possible throughout the domain. In typical 2D simulations, the required number of deg
of freedomn for acceptable accuracy typically lies in the rangé t01C. A key aim of
the present paper is to provide usable methods for problems of this sort. The use of pa
computing power plays an essentiale Th achieving this aim.

Because the variable of prime interest here is the flow veldgitthe discretisation
schemes of most interest are those which preserve conservation of mass (1.2) in an a
priate way, with the prime candidates being mixed finite element or finite volume techniqt
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Because of the lack of regularity in this problem, we discretise (1.1) and (1.2) using
lowest order mixed Raviart—-Thomas elements on triangular meshes [3, 32]gTep-
proximated in an appropriate subspace of the vector-valued piecewise linear functions.
resulting discretisation enforces mass conservation on each element of the mesh and 1
turn implies that the velocity field is in fact piecewise constant, making the computatior
particle trajectories extremely simple.

This type of discretisation yields a symmetric indefinite systensaafdle-pointtype
which, in the presence of large variationskrand n, is very difficult to solve quickly
enough for the multiple statistical simulations described above. We describe a fast par
solver for these systems. The results in Section 5 show that, using our solver with a f
number of processors, the time taken for a solve scales almost linearly (i.e., optimally)
and is remarkably robust to? andx. Moreover, almost 100% parallel efficiency is observec
when the algorithm is tested on a machine with up to 10 processors. A modest decrea
efficiency is observed for higher numbers of processors.

Our solver is built on two essential steps. The first step decouples the velocity fielc
the saddle-point problem from the pressure field. This is done by writing the velocity as
curl of an appropriate discrete stream function, which automatically satisfies the disc
counterpart of the mass conservation law (1.2). The required discrete stream function t
out to be a standard finite element approximation of the solution of a related symme
positive definite (SPD) problem which can be found independent of the pressure. S
SPD systems are easier to solve than indefinite ones and this one turns out to hav
added advantage of being about five times smaller than the original saddle-point prob
A further advantage of this approach is that the approximate pressure (if it is required)
be retrieved by solving a triangular system by simple back substitutions.

The second step in the solver is the application of parallel preconditioned conjuc
gradient methods to solve for the discrete stream function. This is done using addi
Schwarz preconditioners (e.g., [5]) based on solves in overlapping subdomains toge
with a global coarse grid solve. It is known that this process can be used to build v
efficient “black-box” parallel solvers which are remarkably robust for problems with high
discontinuous coefficients discretised on unstructured meshes [15, 16]. We have rec
developed a general parallel package which implements this type of solution strategy
we use it here to solve the systems arising from the present application. This represer
extreme test for the package, and indeed for domain decomposition methods in genera
we are pleased to be able to report good performance of the solver under these circumste

Other iterative methods for related problems are reported, for example, in[2, 38], altho
there the emphasis is on finite volume/multigrid techniques.

The layout of this paper is as follows. In Section 2 we shall describe the background tc
statistical models of heterogeneous media. In Section 3 we briefly review the discretisa
of (1.1) and (1.2) and describe the reduction of the saddle-point system to an SPD sys
In Section 4 we describe the additive Schwarz procedure and its resilience to discontin
coefficients as well as our “black-box” package [19, 20]. In Section 5 we give a seque
of experiments which show the performance of the method.

2. STATISTICAL MODELLING OF HETEROGENEOUS MEDIA

The flow of fluids in the rocks composing the earth’s crust is important in a numt
of technological and industrial fields, most notably the hydrocarbon and water resoul
industries. In the former, one is motivated to understand the underground flow of oil (
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gas) in order to recover as much of this resource as possible. In the latter, a prope
derstanding of the flow of groundwater and of the transport of chemicals in it is esser
not only for good resource management and quality control but also for application:
pollution modelling. One option for the long-term disposal of radioactive waste is store
in an underground repository. In order to scientifically assess the safety of this option
necessary to model the transport of radionuclides in flowing groundwater. Thus, this t
is of general environmental importance.

From now on we restrict our attention to groundwater flow. One of the main characi
istics of the rocks in the earth’s crust affecting this flow is their heterogeneity (i.e., spa
variation). In particular the spatial variation of permeabikin (1.1) gives rise to variability
in the flow velocity, which in turn affects the transport of dissolved chemicals or pollutar
This heterogeneity has two main aspects.

1. Uncertainty. Because the rock properties are varying in a complicated way ant
is not possible to measure the permeability at each point in space, there is inevit
a degree of uncertainty concerning the values of the permeability. However, the |
meability is in principle required at every point and simple-minded interpolation
measured values provides an insufficiently accurate approximation.

2. Dispersion. The heterogeneity means that the velocity field varies on a ran
of length scales and so particle paths that are initially close together can bec
progressively separated. This phenomenon—cdljettodynamic dispersiesis the
primary mechanism for the spreading of a plume of pollutant as it is transported
the groundwater flow [11].

A widely used method of treating heterogeneity, capable of dealing with both the
aspects, is stochastic modelling. The basic idea is to model the permeability field :
stochastic spatial process, assuming that a single realisation of this stochastic proc
a reasonable representation of the permeability field and that any of the realisation:
equally probable given the information available from measurements. This approach |
to the stochastic PDEs. (1.1) and (1.2), whgm@nd Pr are now random variables. Given
certain statistical properties k{which we now describe), it is of interest to study statistica
properties of those random variables. Thus, it is essential that we can quickly and efficie
solve (1.1) and (1.2) and, most importantly, compute the velacftyr each realisation of
k. More detail on the following statistical background can be found in Refs. [1, 10].

A random fieldon an open domai® c R? (also called aspatial proceskis a set of
random variableZ (X), each of which is associated with a poknt . This random field
is called Gaussianif for each arbitraryn, each set oh random variables located at
arbitrarily chosen spatial points is Gaussian. Such fields can be completely specifie
their (spatially varying) mean and covariance functions, denoted respectivetgyand
(X, Y) = E{(Z(X) —m(X)) (Z(Y) —my)}, forx, y € Q.

Inthis paper we will be concerned only wihatistically homogeneous isotrofiiaussian
random fields whose mean and covariance have the particular forms

mE) =m, (X Y) =ocexp—[X — y|/2), (2.1)
for positive constants, o, andi. Elementary manipulations show that

E{(Z(X) — Z(¥)%) = E{Z(X)?} + E{Z()H} — 2E{Z(X) Z(})}
= 2021 — exp(—[X — YI/M)] = ¥ (IX — ), (2.2)
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wherey (r) :=20%(1 — exp(—r /1)) is called thevariogram see, e.g., [10]. The parameter
A is called thelength scale(2.2) shows thaZ(X) and Z(y) can only be expected to be
close wherx — y| < A. So, as\. — 0, the random fiel& becomes “rougher.”

We shall solve (1.1) and (1.2) in the case whenKdaga realisation of such a Gaussian
random field, usually called a “lognormal distribution.” There is some evidence from fie
data that this gives a reasonable representation of reality in certain cases [14, 24]. T
are many good methods for generating realisations of Gaussian random fields, inclu
those based on FFT [18, 33], direct simulation [12], and the turning bands method [28,
Here we use the turning bands approach that represents the field as a superpositi
one-dimensional fields, which are generated along lines radiating from the origin usir
spectral technique.

Of particular importance to the accuracy of any discretisation is the question of regula
of this realisation. This question is thoroughly investigated in the statistical literature.
particular, it can be deduced from Adler [1] (see also [9]) that dfenotes any realisation of
the Gaussian random fieltlintroduced above then, with probability 1, there exists a positiv
constanfAsuchthatX (X) — X(y)| < A|Xx — y|*,forallX, y € ©,and0< o < 1/2.Itthen
follows from the elliptic PDE theory that K is any realisation of a lognormal distribution,
then the velocity fieldj appearing in (1.1) will notin general exhibit better thigregularity,
thus motivating the use of low-order elements (see [9, Appendix] for more detail).

Once the system (1.1) and (1.2) has been solved for multiple realisatikasidtthe stat-
istical properties of the velocity field have been found, the dispersion present in the sys
can (at least when the molecular diffusion is small) be studied by looking at the statis
of particle paths moving in the velocity field. In fact}; denotes thgth coordinate of
the particle displacement from its mean position then the spreading can be characte
by the second order moment of the particle patkg::= E{X|X|} for j,| =1,2. The
variablesX; satisfy the system of differential equatiohX’ /dt = q;, whereq; is the jth
component of the velocity field. This model highlights another advantage of the low-or
mixed finite element method: Since the computed velocity field is constant on each elen
the differential equation foXj is trivially integrated in an element by element fashion, thu
allowing the efficient computation of the many particle paths which would be required
statistical analyses.

Before continuing we remark that there are many stochastic models for groundwater
(see, e.g., [27] for a review), We have chosen the given model here because it is a relat
simple model which applies to fully saturated flows, but still has many of the featur
of some of the more complicated models. We remark also that more complicated mo
require more data to support them, and data are very often difficult to come by, espec
in the case of deep geological waste disposal, our chief motivation for developing f
algorithm.

3. DISCRETISATION AND REDUCTION TO SPD SYSTEM

For ease of notation, from now on we replageby pin (1.1) and we consider (1.1) and
(1.2) on a simply connected open dom&inc R? with a polygonal boundary, which is
assumed partitioned intBp U I'y. Each of'p andT'y is assumed to consist of a finite
union of intervals of" and each of the intervals iny is assumed to contain its end points.
Throughout we shall assume thy # @, a condition which is generically satisfied in
groundwater flow applications, where some inflow and outflow must occur. The extens
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to the case wheil'p = ¢ (when p is non-unique) can easily be made by imposing a
extra condition orp in the weak form below (e.g., that should have a prescribed mean
value—See [13]).

Let v(X) denote the outward unit normal frofa at X € I'. We describe the solution of
(1.1) and (1.2) in the case whegeis a positive constant arklis a general symmetric
uniformly positive definite Zx 2 matrix-valued function orf2. (In Section 5,k will be
a scalar multiple of the identity.) This system is to be solved subject to mixed bound
conditions:

p=gq onTp, and G-v=0 only. (3.1)
Let (-, -) L, denote the usual inner productlin(2)¢, ford = 1, 2. Then introduce the
spaceH (div, Q) 1= {v € L(Q)? : divi € Lo(R)}, withthe inner produatll, v) v giv.) :=
@, V)2 + (divi, divy) ,q). Introduce also the subspaceHg n(div, Q):
{v € H(div, ) :v - v|\y = O} and, forl, v € Hg n(div, ) andw € L»(R2), define

Mm@, v) = (k= 1T, D)2, b(@, w) :=—(divd, w) L), and

G@) :=—/ gv-vds
I'p

Then the weak form of (1.1), (1.2) is to find, p) € Ho n(div, ) x L(2) such that

m(d, v) + b(v, p) = G(v), for allv € Ho n(div, Q),} (3.2)

b(g, w) =0, forallw € Lo(R).

The mixed finite element discretisation of (3.2) is obtained by choosing finite dimensio
subspace® C Ho n(div, ) andW C L»(2) and seeking@, P) € V x Wtosatisfy (3.2)
forallv € Vandw € W. By choosingbase@; :i = 1,....ny}and{wj:j =1,...,ny}
for V andV and writing

Ny

ny
Q=ZQi5i, P=ijwj,
i—1 =1

the discrete problem reduces to the indefinite linear equation system

(% B)Cﬁ::C) inR™ x R™, (3.3)
BT 0/\p 0

WhereMi,i/ = m(ﬁ. s ﬁir), Bi,j = b(ﬁ, s wj), and fi = G(lji).

To constructy and W, let 7 denote a triangulation of2 into conforming triangles
T € 7. We assume that theollision points(i.e., end-points of the intervals ifiy) are
nodal points of this triangulation. Lef denote the set of all edges of the triangles ir
7. It is convenient to think of these edges as open. For Bny &, we let vg denote
the unit normal to the edgE which, for convenience, is assumed to be oriented so th
Ve e{XeR?: x> 0U{(0,1)T}. Let&, Ep andEy denote the edgel € £ which lie,
respectively, in2, I'p and'y. The space) is defined to be the space of all functions
v € Hon(div, Q) such that for allT € 7, there exist scalargr, B+ andyr such that

a%=<?>+ﬁx forall % e T. (3.4)
T
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Eachv € V can be completely determined by specifying the constant value 6 for
eachE € & U &p and the standard basis fBris constructed by associating with each edge
E € & U &p, afunctionvg € V with the property that

VE - Vg = SE.E (3.5)

with § denoting the Kronecker delta. The spadeis chosen as the space of piecewise
constant functions of, with basis consisting of the characteristic functiansof each of
the trianglesT € 7. Thus

Ny = (#E +#Ep). My = #71), (3.6)

where, throughout, & denotes the number of elements of a (finite) Aet

Although the analysis below is given for system (3.3) with permealki]ity the practical
implementation of (3.3) we shall replakén m by k, the piecewise constant interpolation
of k at the centroids of the triangles in the meéBhThis is very useful practically since
the generation of the Gaussian random fleld expensive and it is important to sample it
at as few points as possible. It is shown in [9, Appendix] that this approximation does
degrade the estimate for the erfiay — Q|| H(div.Q)-

With the motivation given in Section 1, we now introduce our decoupling procedure
(3.3).

3.1. General Decoupling Procedure

The decoupling can be achieved by finding a béais. . ., z;} of ker BT. (SinceBT has
full rank, i = ny, — ny,.) If we have such a basis, then the solutipaf (3.3) can be written

f
q=> d4;z7=2"q (3.7)

j=1
for somed € R" whereZ denotes the\ x n,, matrix with rowsz], ..., z{. Also, since

ZB=(B"z")T = 0, multiplying the first (block) row of (3.3) byZ shows thatj is a
solution of the linear system

Ag =t (3.8)

where A = ZMZ" andf = Zf. SinceM is SPD, so isA and(q is the unique solution of
(3.8). Thus, if the basig, .. ., zq} of ker BT can be found, then the velocigyin (3.3) can
be computed by solving the decoupled SPD system (3.8) rather than the indefinite cou
system (3.3). Ifthe pressupds also of interest, it may be found by computingpenplemen-

tary basis{za1, ..., z,,} with the property that spafe, ..., zi, Zi11, .. ., Zn,} = R™.
If Z' then denotes the matrix with rowe§, ;. .. .,z , thenpis the unique solution of the

My X Ny system
(Z’B)p=Z(f — Mq). (3.9)

We show in the next two sections that, in the particular case (3.3),

(i) Itis always easy to find a basfg, ..., zz} of ker BT.
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(i) The resulting matrix An the reduced problem (3.8) is in general a bordered matrix
whose main block consists of the stiffness matrix arising from a standard piecewise lir
finite element approximation to an associated-glliptic problem, and the number of
borders is one less than the number of disconnected compondnys in

(iii) The system (3.8) is about 5 times smaller than (3.3).

Note that a choice of complimentary basis (in fact a subset of the fundamental b
{e1,...,en,} of R™) can be made so that the coefficient matzi\8 in (3.9) is lower
triangular (see [9, 35] for a proof).

To establish conclusions (i)—(iii) we need to exploit the particular properties of (3.3).
particular note that finding a basis,, . .., z;} of ker BT is equivalent to finding a basis
1, ..., v of the finite element space

l>:={\7€V:b(\7,W)=O forall W € Wj}.

To see why leZ = (Z; ;) be the matrix with rowg!, ..., zg Then the formulae

ny

b= Ziv, i=1...n (3.10)

j=1
(where{v;} is the basis ol), determine the basig }. Conversely, if the basig;} of V
is known, then the matriZ (and hence the basis, . .., zs of ker BT) is determined by
(3.10).
3.2. Basis ofV

As afirststep, recall th&t is the set of all triangles inthe mesh and fiat £ U Ep U &y
is the set of all edges of the mesh (assumed to be open intervals). Analogously we can
N =N, UNp UANy, with M}, Np and Ny denoting the nodes i, I'p andI'y. Recall
that the end points of each of the componentE gfbelong tol'y and, since the collision
points between Neumann and Dirichlet boundaries are mesh points, these end points
M.

For P € \V, let ®p denote the piecewise linear hat function satisfying(P’) = §p p'.
The basis fod will be constructed from the fundamental functions:

Up = curldp = (3®p /X, —dPp/3X1) . (3.11)

(i.e.,®p is the stream function foffp). The functions (3.11) clearly satisfy dWp = Oon
each triangle of the mesh, and a subset of them li¢as the following proposition shows.
(For a proof, see [3, Corollary 1113.2].)

PROPOSITION3.1. For each Pe A UNp, Up € V.

Note that eachffp can be expressed as a local linear combination of the basis functi
ve of V satisfying (3.5); in fact only thosgé: corresponding to edgds touching nodeP
appear in the expansion & (see Fig. 1).

The functions introduced in Proposition 3.1 span a subsgt biit for general boundary
conditions, there are not enough of them to constitute a basig.f8rsmall number of
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%

. L,
FIG. 1. Divergence-free basis functions (left) andZPEM Up (right).
N

additional basis functions may need to be added.nkedenote the number of connected
components iy and write

Cn=T{UTZU---UTY, T{Nr{=9¢ foralll<e ¢ <ne.
For¢=1,...,nc, let Vi C AV denote the set of mesh nodes Bfy. The following is
proved using elementary arguments in [9].

PrOPOSITION3.2. Foreach¢ =1,...,ng,

> Tpev (3.12)
PeNy

The functions (3.12) are nonlocal linear combinations of the functignsiowever the
nonlocality ofzpeNﬁ Up is confined to the vicinity of"§, (see Fig. 1. The number of
such triangles is typically onl@ ((#7)%/?).

From these elementary results we have our first theorem. It shows thatlwhgng,
by combining all the functions found in Proposition 3.1 with all but one of the functions
Proposition 3.2we have the required basis.

THEOREM3.3. Suppose f# 0. Then a basis fob is

{@p:PeMuND}u{Z@p:ezl,...,nc—l}. (3.13)

PeNy

Proof. Supposen. # 0. Consider a typical Neumann boundary segmieft Since
I'p # 0, this contains #/ nodes and #}; — 1 edges. Summing ovér= 1, ..., n¢, we
obtain #y = #Ny — n¢. Therefore, the number of functions in (3.13) is

BN +8Np +nc—1D) = BN —#Ny+Nc— 1) = #N —#y—1). (3.14)

Furthermore, since we assumed thas simply connected, we can apply Euler’s polyhedror
theorem to obtain

HN —#EN — 1) = (HE) +#Ep) — (HE —#N + 1) = (HE) +#Ep) — #T, (3.15)

Now recalling thath = ny, — nyy, = (#&, + #Ep) — #7, it follows from (3.14) and (3.15)
that the number of functions in (3.13)fis= dim V), as required.
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To complete the proof we merely need to show that the functions in (3.13) are line:
independent. So suppoge: P € Ny UNpland{B,:¢£=1,...,nes — 1} are scalars such
that

ne—1
O= > apWp+> B > Up. (3.16)

PeN,UNp =1 PeNj

Using the linearity oturl, this may be rewritten

6= Zap\i’p = Z op CCII"CDP = Car'(z Olpq)p) s (317)

PeN PeN PeN

whereap :=f, whenP € N for ¢ =1,...,nc — 1 andap :=0 for P € Ny‘. But this
implies that) ,_, ap®p is constant or2 and hence (since\/,(]ﬂ % ), ap = 0 for all
PeN. n

Remark 3.4. In the pure Dirichlet case (i.el;y = ¢), a suitable basis i$\flp Pe
N, P # By} for any choice ofPy € N. The proof follows exactly the same steps with ¢
few changes in notation.

The construction in (3.11), in which divergence-free Raviart—-Thomas elements are v
ten as the curls of suitable stream functions, appears at several points in the litera
e.g., [7, 21] and later in the development of preconditioning strategies for the saddle
system (3.3), [13, 23, 29]. This construction is also found in the subsequent unpubilis
manuscript [22], although the principal subject of that paper is the solution of the Sto
problem.

In this paper we give for the first time an explicit basis fain the case of general mixed
boundary conditions and an algorithmic description of the use of this basis in a solver
(3.3). Recently, the same idea has been investigated in 3D [4], although in that pape
method is developed only for the case of uniform rectangular grids.

In the related but different case of the Stokes problem there is a large literature concer
divergence-free elements; see, for example, [17, 21, 30, 36]. However in the Stokes cas
ter decoupling, the discrete stream function appears underneath a (relatively ill-conditio
fourth-order operator, whereas for groundwater flow only a second-order operator app
For this reason, it is perhaps surprising that the divergence-free reduction has received
attention in the literature for the Stokes problem than for problems like groundwater flc

The procedure given here has a non-trivial extension to 3D. Here the “stream functic
(or more precisely the vector potentials) are no longer the hat functions but rather
Nédélec edge elements [3, p. 117] and graph theoretic methods are needed to sele
appropriate basis [34, 35].

3.3. Implementation

To implement the decoupled system (3.8) for determigjignd hence) we must work
with the matrix A and right hand sidé. A direct elementwise assembly of these from
Raviart-Thomas basis functions can be easily given (see, e.g., [9]). Alternativebn
also be determined from a standard piecewise linear approximation of a related bili
form, without the assembly of any Raviart—-Thomas stiffness matrix entries.
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First observe thaf is formally defined in terms of multiplications with the mati
which, through (3.10), represents the bdsi$ of Vin terms of the basigvj} of V. In the
specific system (3.3) thiy;} are the Raviart—-Thomas velocity basis functidtis: E €
& U &p}, whereas thév;} are the basis functions specified in Theorem 3.3. Thus, we ¢
identify the rows ofZ with the indicesP e N UNp and? = 1, ...,nc — 1, whereas the
columns ofZ correspond tdE € £ U Ep. Then we can rewrite (3.10) as

Up= Y Zpete., PeN UAp (3.18)
Ee& UEp
and
> Up= > Zigte. tel....nc—1 (3.19)
PgN,{" Ee& Ul

With the same convention we can write the elements of the miskrappearing in (3.3) as
ME,E’ = m(ﬁE, BE/), E, E' e & U&p. (320)
Now introduce the bilinear form

ai, ®) = (uK Ve, Vo) e £, P e HYQ), (3.21)
whereK = STkS andS= [ % . Then, forP, P’ € \V, set

App = a(®p, Op),

where{®p} are the piecewise linear hat functions introduced at the beginning of Section
Thus, (after specifying an ordering of the nodes/ijy A is a standard finite element stiffness
matrix corresponding to the bilinear forat., -) with a natural boundary condition on all
of . Let A denote the minor of this matrix obtained by restricting®oP’ € A} U Np.
(This corresponds to imposing an essential boundary conditidiyonMoreover, define
the matrices

Cpe = Z App, and Dy := Z Z Ap.p,

P’EN,{I/ PE/\/’,g P’E/\/,fr

for Pe N UNp and¢, ¢ = 1,...,n; — 1. The following result shows thak can be
obtained by applying a small number of elementary operationk to

THEOREM 3.5.
lcT D)

Remark 3.6. The le of bilinear form (3.21) in the theory of the Raviart—-Thomas
approximation of second-order elliptic problems was pointed out by [13, 29]. Howev
those references were not concerned with the construction of a bagisafut so (3.21)
was not used there in the way it is used here.
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Proof of Theorem 3.5.For P, P’ € N, UANp we have

. . 4 -
App = Z Zp Mg Zp g =MWWp, ¥p) = (uk "curl @p, curl ®p) 22
E,E’'e& UED

= (uk ISV®p, SVDp) 22 = A(Pp, Pp) = Ap p = Ap pr.

Similarly, for P e M UNp andZ=1,...,nc — 1 we have/f\p,p = Cp_. Completely
analogous arguments show th&t, = Dy, ¢, £ =1,...,nc — 1, and sinceA is sym-
metric the theorem follows. m

Remark 3.7. Observe that the decoupled system (3.8) is about five times smaller tl
the original indefinite system (3.3). More precisely, the dimension of (3.8) is smaller t
that of (3.3) by a factor

. H#HE +H#HED +HT

Fi=——#F1——.
H#HE| +H#HED — HT

Note that 3#7) = 2(#&)) + #Ep + #EN and that, under reasonable grid regularity assumj
tions, #£, is the dominant part of&as #f — oo. Thus,F — 5as# — oc.

Remark 3.8. The coefficient matrixA is a bordered matrix with major block consisting
of the standard piecewise linear finite element stiffness matriand with the width of
the bordem: — 1, wheren, is the number of disconnected components in the Neuma
boundaryl'y. If ne = 1, thenA = A. In general, systems of this form can be solved b
standard block elimination algorithms using solves withA.

The average number of nonzero entriesfoper row approaches 7 as the number o
unknownsn in A tends to infinity and the bandwidth (which depends on the orderir
of the degrees of freedom) is in genef@(n'/?). In comparison, for the matrix in the
coupled system (3.3), the average number of nonzero entries per row approaches 5.
the bandwidth is stillO(n%?) (see [35] for details).

On the other hand, under reasonable grid regularity assumptions, the condition nut
of Ais O(n) and the coupled matrix does have a better condition nuii®er'/?) in fact).
However, sincéA is SPD, we can apply preconditioned conjugate gradients, and a rang
optimal preconditioners are available which ensure in theory that the number of iterat
does not grow as increases. (In Section 4 we present a parallel implementation wh
the number of iterations grows with(n'/).) To solve system (3.3) on the other hand, we
would have to fall back on other Krylov subspace methods such as MINRES [31]. Here
the unpreconditioned case) the number of iterations can only be expected to grow no f
than the condition number of the matrix (i.@(n'/?) and optimal preconditioners are not
readily available (see [35] for details). So from several points of view, the reduction to S
makes practical sense.

4. PARALLEL ITERATIVE METHOD

In this section we briefly describe our parallel solver for the velocity systems (3.8) aris
in Section 3. Our method is based on the conjugate gradient algorithm with additive Schy
preconditioner and uses the implementation provided bpalié package [20] for general
unstructured systems. Although the applications in the present paper are on uniform me
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this uniform structure is not exploited in the solver and so the computing times repotr
should be comparable to those required for more general unstructured applications. /
although our application here is two-dimensional, we mention thaiaké code handles
quite general three-dimensional problems. Full details are given in [19, 20].

The first step in our parallelisation involves the partition of the dongaifin this case
using the mesh partitioning softwaM&TIS [25]) into non-overlapping connected subdo-
mains;,i =1,...,s, each consisting of a union of elements of the mesh. MBS
software strives to ensure that tfg are of comparable size (“load-balancing”) and the
interfaces between them contain as few edges as possible (to minimise communicat
These subdomains are then used for parallelisation of the vector-vector and matrix—ve
operations required in the conjugate gradient algorithm. Good parallel efficiency is achie
for matrix—vector products by ensuring that the necessary communication of boundary
between neighbouring subdomains is overlapped with computations in the (indepenc
subdomain interiors.

For preconditioning we use the unstructured version of the classical two-level addi
Schwarz method (e.g., [6]), which has the general form

S
Pi=RiASRy + > RTAT'R. (4.1)
i=1

In (4.1) the matricesﬁ\i‘1 represent local solves of the underlying PDE on overlappin
extensions; of the ©; with homogeneous Dirichlet condition imposed on the parts c
8% which do not intersect witd 2. The restriction operatdr; is taken to be the simple
injection operator.

In our particular implementation of (4.1; is constructed by adding to eath all the
elements of the mesh which touch its boundafy;. The resulting extended subdomains
< then have overlap, say, withs bounded above (respectively below) by the maximun
(respectively minimum) diameter of all the elements of the mesh. This choice of over
represents a compromise between the competing demands of condition number optinr
and efficiency of the parallelisation (the former requiring, at least in theory, a reasone
overlap and the latter requiring that the overlap should be as small as possible). This cf
also means thah; is simply the minor ofA obtained by removing all the rows and columns
corresponding to nodes not 6% U 9%2;.

In the present version of ttUG package the subdomain solv;es1 are done using a
direct frontal solver and so, to achieve good efficiency, the underlying subdomains she
not become too large. IDOUG the default size is 1000 degrees of freedom (and this
what we use in the present paper). Since the package is designed to run on any numi
processors, we allow the possibility that each processor will handle several subdomait

The preconditioner (4.1) also contains a coarse grid séiyé, which handles the global
interaction of the subdomains. This distinguishes (4.1) from block-Jacobi-like methc
and is essential for the construction of optimal preconditioners. There is no need for
coarse mesh to be related directly to the fine mesh, but in principle it should be capab!l
representing the solution of the underlying PDE with appropriate accuracy. What this me
in practice is that, if one has constructed a fine mesh which provides a sufficiently g
resolution of the underlying problem, then one requires also a coarse mesh with the <
qualitative properties at the coarser level. Such a coarsening may sometimes be ava
(e.g., from an earlier stage of a refinement process) but, since this is not always the
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the DOUG package produces a coarsening automatically. For this, an adaptive piece
uniform strategy is used, the efficiency of which is discussed in detail in [19]. In (4.1) t
operatorR/; denotes piecewise linear interpolation from coarse to fine neshjenotes
its transpose, anfy is the Galerkin produchy = RL ARy.

In the present version ®0UG the coarse mesh problem is assembled and solved direc
using the frontal method on a master processor. In order to maintain efficient parallelisa
the time for this should not exceed the time which is being taken by the processors w
are working on the subdomain solvesnléienotes the total number of degrees of freedor
in the problem anah, is the number of processors then (assuming load balancing) e:
processor has to solve/(1000x n,) problems, each with 1000 unknowns. The cost of .
frontal solve for a finite element problem wihdegrees of freedom (in 2D) is abou8/?
(see the references in [19]). Thus, for parallel efficiency the dimension of the coarse
problemny is chosen irb0UG to satisfy

3/2 . n 2
ny'“ = cost of solving subproblems on processer ——— 100672, (4.2
H g subp p f<(1000* np)> * (4.2)

Note that for a fixedh, this implies thany = O(n?3).
The asymptotic performance of the preconditioner (4.1) is analysed in [6], where i
shown that for general symmetric positive definite problems

K(P71A) = O((H/8)?), asH,h—0 (4.3)

wherex denotes the 2-norm condition numbér, H denote the fine and coarse mest
diameters, and denotes the overlap in the subdomaitys

Then with theDOUG code as described above applied to a problem on a uniform fi
meshn ~ h~2, the overlap is$ = h ~ n~%2 and the coarse mesh (which will be almost
uniform) hasny = O(n?%3) degrees of freedom and diamekér~ n;l/z = O~ 13). The
estimate (4.3) then reducest@P~1A) = O((n¥?n~Y/3)?) = O(n%?) and the number of
iterations of the conjugate gradient method will grow no faster than/6). We examine
numerically in the following section the sharpness of this estimate.

We shall also discuss the performance of this method in the presence of very rc
coefficients. A lot is known about this case provided the jumps occur on a coarser s
than the fine mesh being used to compute the solution. In the case of certain two-|
domain decomposition methods on structured meshes, for example, the effect of the jt
can be removed completely provided the coarse mesh resolves the jumping regions. |
unstructured case this is no longer true, indeed the preconditioned problem may be
as ill-conditioned as the original matrix as the jumps worsen. An example showing |
was given in [15, 16], where it is also shown that the condition number is not a very gc
guide in this case to the behaviour of the preconditioned conjugate gradient (PCG) met
since the preconditioned problem has only a small cluster of eigenvalues near the o
with the others lying in a bounded region away from the origin as the jumps get wor
The general proof of this phenomenon led in [15, 16] to the proof that the corresponc
PCG method in fact is very resilient to jumping coefficients even in the unstructured c:
Roughly speaking [15] shows that in the case of a piecewise constant coefkicigttt
respect to a fixed number of regions of the domain, the number of PCG iterations will g|
only logarithmically in the quantity mak|/min|k|, whereas the condition number itself
generally grows linearly in mak|/min|k|.
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The results in [15, 16] apply when the jumping coefficient varies on a coarser scale t
the fine mesh and so they do not strictly apply to the case of the heterogeneous
considered in the next section, where the coefficient varies on the fine mesh scale. How
interestingly, the numerical results given below indicate that in some sense the resul
[15, 16] hold true even in this extreme case, although at the time of writing we know of
proof of this.

5. NUMERICAL RESULTS

In this section we report on a number of experiments on the parallel solution of (1.
(1.2) in the special case when the dom@irs [0, 1] x [0, 1], the viscosityu is taken to be
1, and the permeabilitly is chosen so that logis a realisation of a Gaussian random fielc
on Q2 (as described in Section 2) with zero mean, varianteand length scalg.

We discretise this problem using the mixed finite element discretisation with lowest or
Raviart—-Thomas elements as described in Section 3 on a uniformTesif2 obtained
by first subdividing the mesh intd? equal squaresi[ — 1)/N, i /N] x [(j — 1)/N, j/N]
and then further subdividing each square into two triangles. This is done by colouring
squares in a red/black checkerboard pattern and then using a diagonal drawn from bc
left to top right for red squares and from top right to bottom left for black squares. We repl;
k on each element with its constant interpolant at the centroid of the element, an appr
which allows an efficient implementation and maintains the accuracy of the discretisa
(see [9, Appendix]). This approach only makes statistical sense when the length scale
of the order of the mesh diameter, equivalently

A =Cy/N, (5.1)

for some constar@, > 1, asN — oo. However, sincéN must already be large enough to
ensure acceptable accuracy (iN.~ 10°, or 1), fairly fine length scales are treatable by
this choice, and it is widely used in hydrogeological modelling. Smaller length scales cc
be treated by an appropriate upscaling of each element, but this would be expensive an
can be expected to have only minor effect on the dispersion in the velocity field, which is
main phenomenon of interest here. So, throughout this sektisreplaced by its piecewise
constant interpolari, which is computed using the turning bands algorithm [28, 37].

We assume that there is zero flow across the bottom and t@paofd that the residual
pressurep is required to have value 1 at the left-hand boundary and 0 at the right-he
boundary (corresponding to a prescribed pressure gradient across the domain). Tht
(3.1) we havd'p = {0, 1} x (0,1) and

gx¥) =1 for X € {0} x [0, 1], gX)=0 forX e {1} x (0,1). (5.2)

We shall give results here only for the computation of the velagity (3.3) by solving
the decoupled system (3.8) fgr In the case of the particular boundary conditions (5.2
the computation reduces to the solution of the linear system

s -0
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whereA is a square sparse matrix, and (sifigehere contains only two componentsis

a single column vector andlis a scalar. All of these are obtained by elementary row ar
column operations on a standard piecewise linear finite element matrix (see Section
Block elimination in this case requires solutions of two systems of the form

Au =b. (5.4)

In the special case here, where the Dirichlet dagaconstant on each componentdf, it
turns out thatp = 0 and we only need to solve (5.4) once. The timings in Section 5.2 ¢
for this task.

The sparse, SPD, and highly ill-conditioned problem (5.4) is solved by the para
iterative method described in Section 4. There are three parameters which determin
difficulty of (5.4): the mesh parameté\, the variancer?, and the length scale. We are
interested in the efficiency of this parallel method as well as its robustness with res
to these parameters. For our tests we akcfwto vary independently, and to vary as in
(5.1) for some constar@, to be specified below. From a numerical point of view thes
are particularly difficult problems, since the realisatiok @fries from element to element
and may take wildely differing values across the domainCAslecreases, the probability
of large jumps irk between neighbouring elements increases (see Section 2). On the C
hand, to illustrate the effect of increasing, in Fig. 2 we give a gray scale plot of the values
oflogk for a single realisation in the cabe= 256 and. = 10/ N for two different values of
o2. Observe that the pattern is independentgfbut that the scale changessfsincreases.
In fact the numerical range of ldggrows linearly inv/o2, and so the condition number
« of the matrix A will grow like exp (2v/02) aso? increases. To emphasise the effect the
this will have on the conditioning of (5.4) observe, for example, that fjarin [k| ~ 10°
wheno? = 8.

5.1. Selection of Stopping Criterion

Since we have in mind here the solution of a range of problems of varying difficulty
an iterative method, it is important to design a stopping criterion which ensures reason
uniform accuracy across all problems. This ensures that subsequent comparison of sol
times will be meaningful. In this section we describe a heuristically based approacl
designing such a stopping criterion.

The preconditioned conjugate gradient (PCG) method for (5.4) with SPD preconditio
P produces a sequence of iterateand residuals' which satisfy’ =b — Au' = A€ where
€ = u — U is the error at théth iterate. This algorithm also computes fireconditioned
residualz = P~r' = (P~1A)€. Typical stopping criteria for the PCG method involve
requiring thatz be small in some norm. More precisely we have the standard estimate
the relative error reduction

1€ 112/11€°%]12 < «11Z 112/ 12°)12, (5.5)

wherex denotes the condition number Bf* A with respect td| - ||,. From this it follows
that the stopping criterion

12 112/12°12 < €/« (5.6)

is sufficient to ensure the required relative error reducti@i,/||€°]|2 < e.
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FIG. 2. Gray scale plot of lod() for 02 = 1 (top) ands? = 8 (bottom).

Of coursex is unknown and some authors (e.g., [26]) suggest estimatahmamically
during the CG iteration. However, even if such a procedure is adopted, the resulting stop
criterion (5.6) is often over-pessimistic due to the fact that the smallest corstanh that
(5.5) holds for ali is often very much smaller than the true condition numbePofA.

Here we are interested in a class of problems which depend on paramgtbrsanda.
For a restricted range of problems (which are small enough so that the exact solution
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be computed by a direct solver), we computeeffective condition number

el 12
R =R N = €2 1Z°]]2

= — 5.7
€2 112112 &1

for some specifiedas the parametees’, N, andi change. Our practical stopping criterion
is then to choose the firstsuch that

12112
o =
12°112

e/Rk. (5.8)

The result of this exercise is thatis found to vary only very mildly with these parameters
(see (5.9) below).

To obtaink(a2, N, 1) experimentally, we solved the test problems using the conjuga
gradient method with additive Schwarz preconditioner as described in Section 4, with in
guessu® = 0, and we iterated until the relative errpe |./||€°||» was less tham = 104
(with the exact solutiom found using a direct solver). From this solution we computed
above.

First, we studied the variation with respectad, and here we fixed = 32 andi =
10/N. In Fig. 3 (left) we plot computed values ofdgainsto? (solid line). The best least
squares straight line fit to these points (dotted line) yields an empirical approximation
the variation of"with o2 as: 026 + 0.1302. To test the validity of this, we recomputed the
above experiments using the stopping criterion (5.8) with 0.26 4+ 0.130? ande = 1074
The relative errofi€ ||»/||€°||> remained in the interval [ 10°°, 1.4 x 10~*] aso? ranged
between 1 and 8, indicating that this is a reasonable approximation of kiavies witho 2.

To study variation with respect tb, we setN = 32 ando? = 4 and computed Tor
A =10/16,10/32 ...,10/1024. Alog — log, plot of these results is given in Fig. 3 (right)
(solid line). The dotted line shows the best computed straight line fit and suggests th
decreases witlD(L~%%) asx increases. From this observation we propose the empiric
models = (0.26 + 0.13052)(0.461~9%%). To demonstrate the validity of this we recomputec
these experiments using this value«ahstopping criterion (5.8) where? = 4, N = 32,
ande = 10~4. We found that the resulting relative error lay in the range [607°, 1.4 x
10-“] indicating a stopping criterion which is robust to variations.in

Finally, to model variations with respect tdé we computedin (5.7) for N = 16, 32,
64, 128 in the case? = 4 andx = 10/16. These experiments suggested that there is |

data points

12l - tttodtine L7 15b o~ —— data points

- - - fitedline

relativa errot/ relative rasiduai
relative error/ refative residual (24)

1 2 3 4 s 6 7 8 <1 -6 -5

\ \
4 3 -2 =] [
variance corratation tength (2}

FIG. 3. \Variation of« with o2 (left) and with for o2 = 4 (right) (N = 32).
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TABLE |
Study of the Iteration Count (A = 10N)

With coarse grid Without coarse grid
N n o? No. It. 1Z112/12°112 No. It. 1Z112/12°112
128 16383 1 21 72x 10710 123 180x 10°°
2 22 120x 10°° 137 118 x 10°°
4 26 567 x 107 174 814 x 1071
6 29 698 x 10°%° 198 682 x 107
8 33 397 x 10°%° 223 422 x 10710
256 65535 1 23 B2 x 10710 270 133x 10°°
2 26 782x 1071 320 109 x 10°°
4 31 547 x 10710 454 667 x 10710
6 34 558 x 10710 602 557 x 107
8 41 381x 1071 740 376 x 10°%°
512 262143 1 27 45 x 10710 593 110x 10°°
2 29 787 x 1071 742 834 x 1071
4 38 494 x 10710 1155 548 x 10710
6 46 433 x 1071 1677 413 x 107
8 57 264 x 10°%° >2000
1024 1048575 1 33 .84 x 10710 1059 874 x 10°°
2 35 640 x 107 1598 646 x 107°
4 45 415x 10°%° >2000
6 57 312x 1071 >2000
8 70 174 x 107 >2000

noticeable increase in the valuexo&3N increases. Thus, we postulate that
Z(c? N, 1) ~ (0.26+ 0.130%)(0.461.%%) (5.9)

aso?, 1, andN vary. In the experiments in the next section we use this formula fottiie
stopping criterion (5.8).

5.2. Performance of lterative Method

Our first set of results in Table |, illustrates the performance of the PCG method
(5.4) with an additive Schwarz preconditioner (4.1), with and without coarse grid solve
various values oN ando?, where the length scalkevaries as in (5.1) witlC, = 10, and
n denotes the number of unknowns in system (5.4). The stopping criterion was (5.8) v
e = 107° and« given by (5.9). The value dfZ' ||2/||Z°| > given is the value of this quantity
when the iteration stops (whezedenotes the preconditioned residual, as described abov

TABLE Il
Number of Iterations asN (and Thereforen) Increases A = 10N, o2 = 2)

N n With coarse grid Without coarse grid
256 65535 26 320
512 262143 29 742

1024 1048575 35 1598
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TABLE 1l
Number of Iterations as o2 Increases N = 256 A = 10/N)

Vo2 With coarse grid Without coarse grid
1 23 270
14 26 320
2 31 454
24 34 602
2.8 41 740

The first thing to note is the observed success of the strategy for computing the coarse
(see Section 4). Since this is constructed just fronggmmetnof the fine grid, ignoring the
fact that the coefficiertt is varying from element to element, on may be concerned that
may not model the underlying fine scales of the problem well enough to be effective. W
there is clearly some dependence on the fine scale of the coefficient (the iteration nun
increase slightly as? increases) this dependence is mild (see below) and the addition of
coarse grid solve is clearly having a big effect on the robustness of the preconditioner. It
caseN = 512 ands? = 8, the addition of the coarse grid solve improved the computatic
time by a factor of about 30.

In the next two tables we investigate the robustness of the iterative method with res
to the various parameters in the problem in more detail. First, in Table 1l we investig
the behaviour of the method &6 grows. We know from the discussion in Section 4 that
for a fixed smooth coefficient functioas N (and thereforen) increases, we expect the
number of PCG iterations to grow at worst with(n'/?) = O(N), when the coarse solve
is not included in the preconditioner, and with(n*/®) = O(N¥3), when the coarse solve
is included. The results in Table Il indicate a growth no worse than this, even though in
case the coefficient is extremely rough.

In Table Il we illustrate how the iteration numbers are affected by grow#tfifor N =
256 andh = 10/N. The rate of growth of the number of PCG iterations is approximate
linear in v/o2. This behaviour is observed both with and without a coarse grid sol
although with a considerably larger asymptotic constant in the latter case. This shoul
compared with the fact that tleondition numbenpf the stiffness matridA in (5.4) grows
like exp(2+/52). This observed behaviour (where the growth of the number of iterations
logarithmic in the condition number) is exactly as proved in [15, 16] (see Section 4)
the special case when the number of regions in which the coefficient has a constant \

TABLE IV
Effect of C, on the Iteration Count (N = 512, with Coarse Grid)

C, =5 C, =20
o? No. It. 1Z112/12°)12 No. It. 1Z112/12°112
1 29 624 x 1010 27 587 x 10710
2 34 508 x 10710 27 569 x 10710
4 46 385x 107 30 651 x 1071°
6 62 307 x 10°% 35 419 x 107
8 82 191x 1070 41 337x 10°%°
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TABLE V
Effect of Aspect RatioL on Iteration Count
(with Coarse Grid)
L No. It. 12 12/112°12
1 31 547 x 10710
4 42 601 x 1071
16 50 513 x 10710
64 65 756 x 1010

is small compared to the number of elements on the fine mesh. Here we have comg
the harder problem where the coefficient has a different value on each element but we
observe the same good behaviour. It remains an open gquestion to prove this.

Recall that for a physically realistic model we assume (see (5.1)) that the length s
A decreases linearly in/N. In the previous Tables |-l we took, = 10 in (5.1). In
Table IV we illustrate the case3, = 5, 20. As expected, the smaller value @f leads
to neighbouring values df being less well correlated, and thus a larger number of PC
iterations are needed to solve this “rougher” problem.

In groundwater flow calculations in practice it is often necessary to study flows in lo
thin regions. In Table V we repeat some of the above calculations for the case when
domainf2is [0, L] x [0, 1] and we study the effect of varying the aspect ration 1 of the
domain. In the absence of any additional information concerning anisotropy, in general
such problems we would need to take the same mesh diameter in both coordinate direc
to ensure adequate accuracy. Thus, for each valuewe here construct a uniform tensor
product mesh witiN, subdivisions along the side [0, 1] ahdx N, subdivisions along
the side [0,L]. However, in order to compare problems of the same dimengipnis
chosen to ensure that the total number of degrees of freedom in the system is fixed at
(N +1) % (N — 1), with N = 256. For these experiment$ = 4 andi = 10/256. The
iteration count, ak increases, is givenin Table V. A very modest growth wviitils observed.

Our final table, Table VI, illustrates the parallel efficiency of the algorithm. To understa
these results, recall that theuG solver described in Section 4 is organised on a master/sla
model. In the construction of the preconditioner, the coarse mesh is assembled and s
on the master processor while the slaves handle the solves on the subdomains. Simila

TABLE VI
Parallel Efficiency on SP2 2 = 2,N = 256,\ = 1/N)

Without coarse grid With coarse grid
No. slaves Time (s) Efficiency Time (s) Efficiency
1 156.71 100% 12.65 100%
2 79.86 98% 6.25 101%
4 43.53 90% 3.15 100%
6 30.22 86% 2.04 103%
8 24.41 80% 1.62 98%
10 20.58 76% 1.34 94%
12 19.35 67% 1.19 89%

14 17.20 65% 1.10 82%
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the execution of dot and matrix—vector products, the slaves do the local calculations w
the master is responsible for collating global information (see also [19]). In Table VI
give the parallel efficiency results as a function of the number of slave processors.
times recorded are those obtained on the 16 node IBM SP2 at the Daresbury Labore
United Kingdom (Peak performance: 20 GFlops/sec per processor). The efficiency coll
is computed in each casetd4)/(st(s)), wheret (s) is the time required by the solver when
s slaves are used. Because of the master-slave set up, it may be argued that to achie
timing t (s) we actually use + 1 processors. While this is strictly true, it is easily seen the
if we recomputed the efficiencies using the formulél2/((s + 1)t(s)), then efficiencies
of well over 100% will result. These figures indicate that there is no bottleneck presen
communication between master and slave. In effect, the bulk of the computation is d
on the slaves and so the figures in Table VI give an accurate impression of the par
efficiency of the algorithm.

In Table VI, note especially the improved parallel efficiency of the method with tt
coarse grid compared to that without. This indicates the success of the the parallelizz
strategy implemented iDOUG: the coarse solve is not only necessary to obtain good the
retical results, it also gives much improved timings and efficiency even though in princi
much more communication is needed. The key is the overlapping of communication v
computation implemented BOUG [19, 20].

Efficiencies of greater than 100% for small numbers of processors are not unusual,
to cache effects as well as small differences in the actual quality of the solution produ
at the end of the PCG iteration (see also [19]).

Finally, in Fig. 4 we plot the velocity fields corresponding to the problem (1.1) ar
(1.2) with boundary conditions (5.2) in the calle= 256, » = 10/N, ando? =1, 4, 8
respectively. Note the increased dispersion in the flow path€ axcreases.
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Note added in proofAfter this work was completed, the paper “Mixed Finite Element Methods and Tree
Cotree Implicit Condensation,” by P. Alotto and |. Perudia[colo 36, 233 (1999)], came to our attention. This
paper uses related algebraic techniques to speed up the iterative solution of saddle-point problems. Howev
reduced systems which result there are of Schur-complement type and therefore entirely different from ours
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