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In this paper we describe a fast parallel method for solving highly ill-conditioned
saddle-point systems arising from mixed finite element simulations of stochastic
partial differential equations (PDEs) modelling flow in heterogeneous media. Each
realisation of these stochastic PDEs requires the solution of the linear first-order
velocity–pressure system comprising Darcy’s law coupled with an incompressibil-
ity constraint. The chief difficulty is that the permeability may be highly variable,
especially when the statistical model has a large variance and a small correlation
length. For reasonable accuracy, the discretisation has to be extremely fine. We solve
these problems by first reducing the saddle-point formulation to a symmetric posi-
tive definite (SPD) problem using a suitable basis for the space of divergence-free
velocities. The reduced problem is solved using parallel conjugate gradients precon-
ditioned with an algebraically determined additive Schwarz domain decomposition
preconditioner. The result is a solver which exhibits a good degree of robustness with
respect to the mesh size as well as to the variance and to physically relevant values of
the correlation length of the underlying permeability field. Numerical experiments
exhibit almost optimal levels of parallel efficiency. The domain decomposition solver
(DOUG,http://www.maths.bath.ac.uk/∼parsoft) used here not only is ap-
plicable to this problem but can be used to solve general unstructured finite element
systems on a wide range of parallel architectures.c© 2000 Academic Press
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1. INTRODUCTION

In this paper we describe, analyse, and implement a parallel algorithm for use in the
numerical simulation of stochastic partial differential equations (PDEs) modelling ground-
water flow in heterogeneous media. The classical equations governing this application are
the first-order system consisting ofDarcy’s law,

Eq + (k/µ) E∇PR = E0, (1.1)

coupled with themass conservation law,

E∇ · Eq = 0, (1.2)

subject to appropriate boundary conditions. HereEq is thevelocity(more precisely the specific
discharge), andPR is theresidual pressure. The actual pressure isPR− ρgz, wherez is
the fluid height,ρ is the density, andg is the acceleration due to gravity. The functionsEq
andPR are both to be determined from (1.1) and (1.2), withk denoting permeability andµ
denoting the dynamic viscosity.

In contrast to the classical determinisic models,k will, in the probabilistic case considered
here, be modelled using a Gaussian random field. The numerical treatment of this problem
then involves the solution of (1.1) and (1.2) for many differentrealisationsof k and subse-
quent computation of statistical properties of the resulting velocity and/or pressure fields.
In this paper we describe a fast parallel method for the solution of (1.1) and (1.2) whenk is
any typical realisation. Although we do not carrry out here any statistical analysis involv-
ing multiple simulations, a prime motivation of our work is to obtain a numerical method
which is sufficiently accurate and efficient to make such a statistical analysis possible. For
reasons described below, a typical simulation of (1.1) and (1.2) will involve the solution
of very large, highly ill-conditioned indefinite linear systems and the fast method proposed
here constitutes an essential tool which can be used in later statistical analyses. Because of
applications in waste management and in the oil industry, there is a strong technological
motivation for such a tool.

The Gaussian random fields which determinek are characterised by a pair of parameters
(σ 2, λ), whereσ 2 is thevarianceandλ is thelength scaleover which the field is correlated. In
addition, the discrete model also depends onn, the number of degrees of freedom in the grid,
althoughλ andn are typically related to each other. Extreme variations in these parameters
contribute to the ill-conditioning of the discretisation of (1.1) and (1.2), and a key test for our
algorithm is whether it behaves robustly when subjected to variations in these parameters.

It is known that any realisation of the Gaussian random fieldk is Hölder continuous, but
not in general differentiable, and so the resulting velocity and pressure fields have only low
regularity throughout the domain. Since this irregularity is global, it cannot be compensated
for by local mesh refinement, and the only known way to achieve acceptable accuracy for
these problems is to use low-order approximation on a mesh which is (uniformly) as fine as
possible throughout the domain. In typical 2D simulations, the required number of degrees
of freedomn for acceptable accuracy typically lies in the range 106 to 108. A key aim of
the present paper is to provide usable methods for problems of this sort. The use of parallel
computing power plays an essential rˆole in achieving this aim.

Because the variable of prime interest here is the flow velocityEq, the discretisation
schemes of most interest are those which preserve conservation of mass (1.2) in an appro-
priate way, with the prime candidates being mixed finite element or finite volume techniques.
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Because of the lack of regularity in this problem, we discretise (1.1) and (1.2) using the
lowest order mixed Raviart–Thomas elements on triangular meshes [3, 32]. ThenEq is ap-
proximated in an appropriate subspace of the vector-valued piecewise linear functions. The
resulting discretisation enforces mass conservation on each element of the mesh and this in
turn implies that the velocity field is in fact piecewise constant, making the computation of
particle trajectories extremely simple.

This type of discretisation yields a symmetric indefinite system ofsaddle-pointtype
which, in the presence of large variations ink and n, is very difficult to solve quickly
enough for the multiple statistical simulations described above. We describe a fast parallel
solver for these systems. The results in Section 5 show that, using our solver with a fixed
number of processors, the time taken for a solve scales almost linearly (i.e., optimally) inn
and is remarkably robust toσ 2 andλ. Moreover, almost 100% parallel efficiency is observed
when the algorithm is tested on a machine with up to 10 processors. A modest decrease in
efficiency is observed for higher numbers of processors.

Our solver is built on two essential steps. The first step decouples the velocity field in
the saddle-point problem from the pressure field. This is done by writing the velocity as the
curl of an appropriate discrete stream function, which automatically satisfies the discrete
counterpart of the mass conservation law (1.2). The required discrete stream function turns
out to be a standard finite element approximation of the solution of a related symmetric
positive definite (SPD) problem which can be found independent of the pressure. Such
SPD systems are easier to solve than indefinite ones and this one turns out to have the
added advantage of being about five times smaller than the original saddle-point problem.
A further advantage of this approach is that the approximate pressure (if it is required) can
be retrieved by solving a triangular system by simple back substitutions.

The second step in the solver is the application of parallel preconditioned conjugate
gradient methods to solve for the discrete stream function. This is done using additive
Schwarz preconditioners (e.g., [5]) based on solves in overlapping subdomains together
with a global coarse grid solve. It is known that this process can be used to build very
efficient “black-box” parallel solvers which are remarkably robust for problems with highly
discontinuous coefficients discretised on unstructured meshes [15, 16]. We have recently
developed a general parallel package which implements this type of solution strategy and
we use it here to solve the systems arising from the present application. This represents an
extreme test for the package, and indeed for domain decomposition methods in general, and
we are pleased to be able to report good performance of the solver under these circumstances.

Other iterative methods for related problems are reported, for example, in [2, 38], although
there the emphasis is on finite volume/multigrid techniques.

The layout of this paper is as follows. In Section 2 we shall describe the background to the
statistical models of heterogeneous media. In Section 3 we briefly review the discretisation
of (1.1) and (1.2) and describe the reduction of the saddle-point system to an SPD system.
In Section 4 we describe the additive Schwarz procedure and its resilience to discontinuous
coefficients as well as our “black-box” package [19, 20]. In Section 5 we give a sequence
of experiments which show the performance of the method.

2. STATISTICAL MODELLING OF HETEROGENEOUS MEDIA

The flow of fluids in the rocks composing the earth’s crust is important in a number
of technological and industrial fields, most notably the hydrocarbon and water resources
industries. In the former, one is motivated to understand the underground flow of oil (and
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gas) in order to recover as much of this resource as possible. In the latter, a proper un-
derstanding of the flow of groundwater and of the transport of chemicals in it is essential
not only for good resource management and quality control but also for applications in
pollution modelling. One option for the long-term disposal of radioactive waste is storage
in an underground repository. In order to scientifically assess the safety of this option it is
necessary to model the transport of radionuclides in flowing groundwater. Thus, this topic
is of general environmental importance.

From now on we restrict our attention to groundwater flow. One of the main character-
istics of the rocks in the earth’s crust affecting this flow is their heterogeneity (i.e., spatial
variation). In particular the spatial variation of permeabilityk in (1.1) gives rise to variability
in the flow velocity, which in turn affects the transport of dissolved chemicals or pollutants.
This heterogeneity has two main aspects.

1. Uncertainty. Because the rock properties are varying in a complicated way and it
is not possible to measure the permeability at each point in space, there is inevitably
a degree of uncertainty concerning the values of the permeability. However, the per-
meability is in principle required at every point and simple-minded interpolation of
measured values provides an insufficiently accurate approximation.
2. Dispersion. The heterogeneity means that the velocity field varies on a range
of length scales and so particle paths that are initially close together can become
progressively separated. This phenomenon—calledhydrodynamic dispersion—is the
primary mechanism for the spreading of a plume of pollutant as it is transported by
the groundwater flow [11].

A widely used method of treating heterogeneity, capable of dealing with both these
aspects, is stochastic modelling. The basic idea is to model the permeability field as a
stochastic spatial process, assuming that a single realisation of this stochastic process is
a reasonable representation of the permeability field and that any of the realisations are
equally probable given the information available from measurements. This approach leads
to the stochastic PDEs. (1.1) and (1.2), whereEq andPR are now random variables. Given
certain statistical properties ofk (which we now describe), it is of interest to study statistical
properties of those random variables. Thus, it is essential that we can quickly and efficiently
solve (1.1) and (1.2) and, most importantly, compute the velocityEq for each realisation of
k. More detail on the following statistical background can be found in Refs. [1, 10].

A random fieldon an open domainÄ ⊂ R2 (also called aspatial process) is a set of
random variablesZ(Ex), each of which is associated with a pointEx ∈ Ä. This random field
is calledGaussianif for each arbitraryn, each set ofn random variables located atn
arbitrarily chosen spatial points is Gaussian. Such fields can be completely specified by
their (spatially varying) mean and covariance functions, denoted respectively bym(Ex) and
6(Ex, Ey) := E{(Z(Ex)−m(Ex)) (Z(Ey)−m(Ey))}, for Ex, Ey ∈ Ä.

In this paper we will be concerned only withstatistically homogeneous isotropicGaussian
random fields whose mean and covariance have the particular forms

m(Ex) := m, 6(Ex, Ey) := σ 2 exp(−|Ex − Ey|/λ), (2.1)

for positive constantsm, σ , andλ. Elementary manipulations show that

E{(Z(Ex)− Z(Ey))2} = E{Z(Ex)2} + E{Z(Ey)2} − 2E{Z(Ex)Z(Ey)}
= 2σ 2[1− exp(−|Ex − Ey|/λ)] = γ (|Ex − Ey|), (2.2)
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whereγ (r ) := 2σ 2(1− exp(−r/λ)) is called thevariogram; see, e.g., [10]. The parameter
λ is called thelength scale: (2.2) shows thatZ(Ex) and Z(Ey) can only be expected to be
close when|Ex − Ey| < λ. So, asλ→ 0, the random fieldZ becomes “rougher.”

We shall solve (1.1) and (1.2) in the case when logk is a realisation of such a Gaussian
random field, usually called a “lognormal distribution.” There is some evidence from field
data that this gives a reasonable representation of reality in certain cases [14, 24]. There
are many good methods for generating realisations of Gaussian random fields, including
those based on FFT [18, 33], direct simulation [12], and the turning bands method [28, 37].
Here we use the turning bands approach that represents the field as a superposition of
one-dimensional fields, which are generated along lines radiating from the origin using a
spectral technique.

Of particular importance to the accuracy of any discretisation is the question of regularity
of this realisation. This question is thoroughly investigated in the statistical literature. In
particular, it can be deduced from Adler [1] (see also [9]) that ifX denotes any realisation of
the Gaussian random fieldZ introduced above then, with probability 1, there exists a positive
constantAsuch that|X(Ex)− X(Ey)| ≤ A|Ex − Ey|α, for all Ex, Ey ∈ Ä, and 0< α < 1/2. It then
follows from the elliptic PDE theory that ifk is any realisation of a lognormal distribution,
then the velocity fieldEq appearing in (1.1) will not in general exhibit better thanCα regularity,
thus motivating the use of low-order elements (see [9, Appendix] for more detail).

Once the system (1.1) and (1.2) has been solved for multiple realisations ofk and the stat-
istical properties of the velocity field have been found, the dispersion present in the system
can (at least when the molecular diffusion is small) be studied by looking at the statistics
of particle paths moving in the velocity field. In fact ifX′j denotes thej th coordinate of
the particle displacement from its mean position then the spreading can be characterised
by the second order moment of the particle paths:X jl := E{X′j X′l } for j, l = 1, 2. The
variablesX′j satisfy the system of differential equationsd X′j /dt = qj , whereqj is the j th
component of the velocity field. This model highlights another advantage of the low-order
mixed finite element method: Since the computed velocity field is constant on each element,
the differential equation forX′j is trivially integrated in an element by element fashion, thus
allowing the efficient computation of the many particle paths which would be required in
statistical analyses.

Before continuing we remark that there are many stochastic models for groundwater flow
(see, e.g., [27] for a review), We have chosen the given model here because it is a relatively
simple model which applies to fully saturated flows, but still has many of the features
of some of the more complicated models. We remark also that more complicated models
require more data to support them, and data are very often difficult to come by, especially
in the case of deep geological waste disposal, our chief motivation for developing this
algorithm.

3. DISCRETISATION AND REDUCTION TO SPD SYSTEM

For ease of notation, from now on we replacePR by p in (1.1) and we consider (1.1) and
(1.2) on a simply connected open domainÄ ⊂ R2 with a polygonal boundary0, which is
assumed partitioned into0D ∪ 0N . Each of0D and0N is assumed to consist of a finite
union of intervals of0 and each of the intervals in0N is assumed to contain its end points.
Throughout we shall assume that0D 6= ∅, a condition which is generically satisfied in
groundwater flow applications, where some inflow and outflow must occur. The extension
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to the case when0D = ∅ (when p is non-unique) can easily be made by imposing an
extra condition onp in the weak form below (e.g., thatp should have a prescribed mean
value—See [13]).

Let Eν(Ex) denote the outward unit normal fromÄ at Ex ∈ 0. We describe the solution of
(1.1) and (1.2) in the case whereµ is a positive constant andk is a general symmetric
uniformly positive definite 2× 2 matrix-valued function onÄ. (In Section 5,k will be
a scalar multiple of the identity.) This system is to be solved subject to mixed boundary
conditions:

p = q on0D, and Eq · Eν = 0 on0N . (3.1)

Let (·, ·)L2(Ä)d denote the usual inner product inL2(Ä)d, for d = 1, 2. Then introduce the
spaceH(div, Ä) :={Ev ∈ L2(Ä)2 : div Ev ∈ L2(Ä)}, with the inner product(Eu, Ev)H(div,Ä) :=
(Eu, Ev)L2(Ä)2 + (div Eu, div Ev)L2(Ä). Introduce also the subspaceH0,N(div, Ä) :=
{Ev ∈ H(div, Ä) : Ev · Eν|N = 0} and, forEu, Ev ∈ H0,N(div, Ä) andw ∈ L2(Ä), define

m(Eu, Ev) := (µk−1Eu, Ev)L2(Ä)2, b(Ev, w) :=−(div Ev, w)L2(Ä), and

G(Ev) :=−
∫

0D

gEv · Eν ds.

Then the weak form of (1.1), (1.2) is to find(Eq, p) ∈ H0,N(div, Ä)× L2(Ä) such that

m(Eq, Ev)+ b(Ev, p) = G(Ev), for all Ev ∈ H0,N(div, Ä),

b(Eq, w) = 0, for all w ∈ L2(Ä).

}
(3.2)

The mixed finite element discretisation of (3.2) is obtained by choosing finite dimensional
subspacesV ⊂ H0,N(div, Ä)andW ⊂ L2(Ä) and seeking( EQ, P) ∈ V ×W to satisfy (3.2)
for all Ev ∈ V andw ∈W. By choosing bases{Evi : i = 1, . . . , nV} and{w j : j = 1, . . . , nW}
for V andW and writing

EQ =
nV∑
i=1

qi Evi , P =
nW∑
j=1

pj w j ,

the discrete problem reduces to the indefinite linear equation system(
M B

BT 0

)(
q

p

)
=
(

f

0

)
in RnV × RnW , (3.3)

whereMi,i ′ :=m(Evi , Evi ′), Bi, j := b(Evi , w j ), and fi :=G(Evi ).
To constructV andW, let T denote a triangulation ofÄ into conforming triangles

T ∈ T . We assume that thecollision points(i.e., end-points of the intervals in0N) are
nodal points of this triangulation. LetE denote the set of all edges of the triangles in
T . It is convenient to think of these edges as open. For anyE ∈ E , we let EνE denote
the unit normal to the edgeE which, for convenience, is assumed to be oriented so that
EνE ∈ {Ex ∈ R2 : x1 > 0} ∪ {(0, 1)T }. Let EI , ED andEN denote the edgesE ∈ E which lie,
respectively, inÄ, 0D and0N . The spaceV is defined to be the space of all functions
Ev ∈ H0,N(div, Ä) such that for allT ∈ T , there exist scalarsαT , βT andγT such that

Ev(Ex) =
(

αT

βT

)
+ γT Ex, for all Ex ∈ T. (3.4)
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EachEv ∈ V can be completely determined by specifying the constant value ofEv · EνE for
eachE ∈ EI ∪ ED and the standard basis forV is constructed by associating with each edge
E ∈ EI ∪ ED, a functionEvE ∈ V with the property that

EvE · EνE′ = δE,E′ (3.5)

with δ denoting the Kronecker delta. The spaceW is chosen as the space of piecewise
constant functions onÄ, with basis consisting of the characteristic functionswT of each of
the trianglesT ∈ T . Thus

nV = (#EI + #ED), nW = (#T ), (3.6)

where, throughout, #A denotes the number of elements of a (finite) setA.
Although the analysis below is given for system (3.3) with permeabilityk, in the practical

implementation of (3.3) we shall replacek in m by k̃, the piecewise constant interpolation
of k at the centroids of the triangles in the meshT . This is very useful practically since
the generation of the Gaussian random fieldk is expensive and it is important to sample it
at as few points as possible. It is shown in [9, Appendix] that this approximation does not
degrade the estimate for the error‖Eq − EQ‖H(div,Ä).

With the motivation given in Section 1, we now introduce our decoupling procedure for
(3.3).

3.1. General Decoupling Procedure

The decoupling can be achieved by finding a basis{z1, . . . , zn◦ } of ker BT . (SinceBT has
full rank,n◦ = nV − nW .) If we have such a basis, then the solutionq of (3.3) can be written

q=
n◦∑

j=1

q◦ j z j = ZTq◦ , (3.7)

for someq◦ ∈ Rn◦ whereZ denotes then◦ × nV matrix with rowszT
1 , . . . , zT

n◦ . Also, since
Z B= (BT ZT )T = 0, multiplying the first (block) row of (3.3) byZ shows thatq◦ is a
solution of the linear system

A
◦
q◦ = f

◦
(3.8)

whereA
◦ = Z M ZT andf

◦ = Zf. SinceM is SPD, so isA
◦

andq◦ is the unique solution of
(3.8). Thus, if the basis{z1, . . . , zn◦ } of ker BT can be found, then the velocityq in (3.3) can
be computed by solving the decoupled SPD system (3.8) rather than the indefinite coupled
system (3.3). If the pressurep is also of interest, it may be found by computing acomplemen-
tary basis{zn◦+1, . . . , znV } with the property that span{z1, . . . , zn◦ , zn◦+1, . . . , znV } = RnV .
If Z′ then denotes the matrix with rowszT

n◦+1, . . . , zT
nV , thenp is the unique solution of the

nW × nW system

(Z′B)p= Z′(f − Mq). (3.9)

We show in the next two sections that, in the particular case (3.3),

(i) It is always easy to find a basis{z1, . . . , zn◦ } of ker BT .
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(ii) The resulting matrix A
◦

in the reduced problem (3.8) is in general a bordered matrix,
whose main block consists of the stiffness matrix arising from a standard piecewise linear
finite element approximation to an associated H1-elliptic problem, and the number of
borders is one less than the number of disconnected components in0N.

(iii) The system (3.8) is about 5 times smaller than (3.3).

Note that a choice of complimentary basis (in fact a subset of the fundamental basis
{e1, . . . , enV } of RnV ) can be made so that the coefficient matrixZ′B in (3.9) is lower
triangular (see [9, 35] for a proof).

To establish conclusions (i)–(iii) we need to exploit the particular properties of (3.3). In
particular note that finding a basis{z1, . . . , zn◦ } of ker BT is equivalent to finding a basis
v
◦→

1, . . . , v
◦→

n◦ of the finite element space

V◦ := { EV ∈ V : b( EV, W) = 0 for all W ∈W}.

To see why letZ = (Zi, j ) be the matrix with rowszT
1 , . . . , zT

n◦ . Then the formulae

v
◦→
i =

nV∑
j=1

Zi, j Ev j , i = 1, . . . , n◦ (3.10)

(where{Ev j } is the basis ofV), determine the basis{v◦→i }. Conversely, if the basis{v◦→i } of V◦

is known, then the matrixZ (and hence the basisz1, . . . , zn◦ of ker BT ) is determined by
(3.10).

3.2. Basis ofV◦

As a first step, recall thatT is the set of all triangles in the mesh and thatE = EI ∪ ED ∪ EN

is the set of all edges of the mesh (assumed to be open intervals). Analogously we can write
N = NI ∪ND ∪NN , withNI ,ND andNN denoting the nodes inÄ, 0D and0N . Recall
that the end points of each of the components of0N belong to0N and, since the collision
points between Neumann and Dirichlet boundaries are mesh points, these end points lie in
NN .

For P ∈ N , let 8P denote the piecewise linear hat function satisfying8P(P′) = δP,P′ .
The basis forV◦ will be constructed from the fundamental functions:

E9P = Ecurl8P = (∂8P/∂x2,−∂8P/∂x1)
T . (3.11)

(i.e.,8P is the stream function forE9P). The functions (3.11) clearly satisfy divE9P = 0 on
each triangle of the mesh, and a subset of them lie inV◦ as the following proposition shows.
(For a proof, see [3, Corollary III3.2].)

PROPOSITION3.1. For each P∈ NI ∪ND, E9P ∈ V◦ .
Note that eachE9P can be expressed as a local linear combination of the basis functions
EvE of V satisfying (3.5); in fact only thoseEvE corresponding to edgesE touching nodeP
appear in the expansion ofE9P (see Fig. 1).

The functions introduced in Proposition 3.1 span a subset ofV◦ , but for general boundary
conditions, there are not enough of them to constitute a basis forV◦ . A small number of
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FIG. 1. Divergence-free basis functionsE9P (left) and
∑

P∈N`
N
E9P (right).

additional basis functions may need to be added. LetnC denote the number of connected
components in0N and write

0N = 01
N ∪ 02

N ∪ · · · ∪ 0
nC
N , 0`

N ∩ 0`′
N = ∅ for all 1≤ `, `′ ≤ nC .

For ` = 1, . . . , nC , let N `
N ⊂ N denote the set of mesh nodes on0`

N . The following is
proved using elementary arguments in [9].

PROPOSITION3.2. For each` = 1, . . . , nC ,∑
P∈N `

N

E9P ∈ V◦ . (3.12)

The functions (3.12) are nonlocal linear combinations of the functionsEvE; however, the
nonlocality of

∑
P∈N `

N

E9P is confined to the vicinity of0`
N (see Fig. 1). The number of

such triangles is typically onlyO((#T )1/2).
From these elementary results we have our first theorem. It shows that when0N 6= ∅,

by combining all the functions found in Proposition 3.1 with all but one of the functions in
Proposition 3.2, we have the required basis.

THEOREM3.3. Suppose nC 6= 0. Then a basis forV◦ is

{ E9P: P ∈ NI ∪ND} ∪
∑

P∈N `
N

E9P : ` = 1, . . . , nC − 1

 . (3.13)

Proof. Supposenc 6= 0. Consider a typical Neumann boundary segment0`
N . Since

0D 6= ∅, this contains #N `
N nodes and #N `

N − 1 edges. Summing over̀= 1, . . . , nC , we
obtain #EN = #NN − nC . Therefore, the number of functions in (3.13) is

(#NI + #ND + nC − 1) = (#N − #NN + nC − 1) = (#N − #EN − 1). (3.14)

Furthermore, since we assumed thatÄ is simply connected, we can apply Euler’s polyhedron
theorem to obtain

(#N − #EN − 1) = (#EI + #ED)− (#E − #N + 1) = (#EI + #ED)− #T , (3.15)

Now recalling thatn◦ = nV − nW = (#EI + #ED)− #T , it follows from (3.14) and (3.15)
that the number of functions in (3.13) isn◦ = dimV◦ , as required.
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To complete the proof we merely need to show that the functions in (3.13) are linearly
independent. So suppose{αP : P ∈ NI ∪ND} and{β` : ` = 1, . . . , nC − 1} are scalars such
that

E0=
∑

P∈NI ∪ND

αP E9P +
nC−1∑
`=1

β`

∑
P∈N `

N

E9P. (3.16)

Using the linearity of Ecurl, this may be rewritten

E0=
∑
P∈N

αP E9P =
∑
P∈N

αP Ecurl8P = Ecurl

(∑
P∈N

αP8P

)
, (3.17)

whereαP :=β` when P ∈ N `
N for ` = 1, . . . , nC − 1 andαP := 0 for P ∈ N nC

N . But this
implies that

∑
P∈N αP8P is constant onÄ and hence (sinceN nC

N 6= ∅), αP = 0 for all
P ∈ N .

Remark 3.4. In the pure Dirichlet case (i.e.,0N = ∅), a suitable basis is{ E9P : P ∈
N , P 6= P0} for any choice ofP0 ∈ N . The proof follows exactly the same steps with a
few changes in notation.

The construction in (3.11), in which divergence-free Raviart–Thomas elements are writ-
ten as the curls of suitable stream functions, appears at several points in the literature,
e.g., [7, 21] and later in the development of preconditioning strategies for the saddle point
system (3.3), [13, 23, 29]. This construction is also found in the subsequent unpublished
manuscript [22], although the principal subject of that paper is the solution of the Stokes
problem.

In this paper we give for the first time an explicit basis forV◦ in the case of general mixed
boundary conditions and an algorithmic description of the use of this basis in a solver for
(3.3). Recently, the same idea has been investigated in 3D [4], although in that paper the
method is developed only for the case of uniform rectangular grids.

In the related but different case of the Stokes problem there is a large literature concerning
divergence-free elements; see, for example, [17, 21, 30, 36]. However in the Stokes case, af-
ter decoupling, the discrete stream function appears underneath a (relatively ill-conditioned)
fourth-order operator, whereas for groundwater flow only a second-order operator appears.
For this reason, it is perhaps surprising that the divergence-free reduction has received more
attention in the literature for the Stokes problem than for problems like groundwater flow.

The procedure given here has a non-trivial extension to 3D. Here the “stream functions”
(or more precisely the vector potentials) are no longer the hat functions but rather the
Nédélec edge elements [3, p. 117] and graph theoretic methods are needed to select an
appropriate basis [34, 35].

3.3. Implementation

To implement the decoupled system (3.8) for determiningq◦ (and henceq) we must work
with the matrix A

◦
and right hand sidef

◦
. A direct elementwise assembly of these from

Raviart–Thomas basis functions can be easily given (see, e.g., [9]). Alternatively,A
◦

can
also be determined from a standard piecewise linear approximation of a related bilinear
form, without the assembly of any Raviart–Thomas stiffness matrix entries.
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First observe thatA
◦

is formally defined in terms of multiplications with the matrixZ
which, through (3.10), represents the basis{v◦→i } of V◦ in terms of the basis{Ev j } of V. In the
specific system (3.3) the{Ev j } are the Raviart–Thomas velocity basis functions{EvE: E ∈
EI ∪ ED}, whereas the{v◦→i } are the basis functions specified in Theorem 3.3. Thus, we can
identify the rows ofZ with the indicesP ∈NI ∪ND and` = 1, . . . , nC − 1, whereas the
columns ofZ correspond toE ∈ EI ∪ ED. Then we can rewrite (3.10) as

E9P =
∑

E∈EI ∪ED

ZP,EEvE, P ∈NI ∪ND (3.18)

and ∑
P∈N `

N

E9P =
∑

E∈EI ∪ED

Z`,EEvE, ` ∈ 1, . . . , nC − 1. (3.19)

With the same convention we can write the elements of the matrixM appearing in (3.3) as

ME,E′ = m(EvE, EvE′), E, E′ ∈ EI ∪ ED. (3.20)

Now introduce the bilinear form

a(ζ, 8) := (µK−1 E∇ζ, E∇8)L2(Ä)2, ζ, 8 ∈ H1(Ä), (3.21)

whereK = STkS, andS= [ 0 1
−1 0

]
. Then, forP, P′ ∈ N , set

AP,P′ = a(8P, 8P′),

where{8P}are the piecewise linear hat functions introduced at the beginning of Section 3.2.
Thus, (after specifying an ordering of the nodes inN ),A is a standard finite element stiffness
matrix corresponding to the bilinear forma(·, ·) with a natural boundary condition on all
of 0. Let A denote the minor of this matrix obtained by restricting toP, P′ ∈ NI ∪ND.
(This corresponds to imposing an essential boundary condition on0N .) Moreover, define
the matrices

CP,`′ :=
∑

P′∈N `′
N

AP,P′ , and D`,`′ :=
∑

P∈N `
N

∑
P′∈N `′

N

AP,P′ ,

for P ∈ NI ∪ND and`, `′ = 1, . . . , nC − 1. The following result shows thatA
◦

can be
obtained by applying a small number of elementary operations toA.

THEOREM3.5.

A
◦ =

[
A C

CT D

]
.

Remark 3.6. The rôle of bilinear form (3.21) in the theory of the Raviart–Thomas
approximation of second-order elliptic problems was pointed out by [13, 29]. However,
those references were not concerned with the construction of a basis forV◦ and so (3.21)
was not used there in the way it is used here.
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Proof of Theorem 3.5.For P, P′ ∈ NI ∪ND we have

A
◦

P,P′ =
∑

E,E′∈EI ∪ED

ZP,E ME,E′ZP′,E′ = m( E9P, E9P′) = (µk−1 Ecurl8P, Ecurl8P′)L2(Ä)2

= (µk−1SE∇8P, SE∇8P′)L2(Ä)2 = a(8P, 8P′) = AP,P′ = AP,P′ .

Similarly, for P ∈ NI ∪ND and ` = 1, . . . , nC − 1 we haveA
◦

P,`′ = CP,`′ . Completely
analogous arguments show thatA

◦
`,`′ = D`,`′ , `, `

′ = 1, . . . , nC − 1, and sinceA
◦

is sym-
metric the theorem follows.

Remark 3.7. Observe that the decoupled system (3.8) is about five times smaller than
the original indefinite system (3.3). More precisely, the dimension of (3.8) is smaller than
that of (3.3) by a factor

F := #EI + #ED + #T
#EI + #ED − #T .

Note that 3(#T ) = 2(#EI )+ #ED + #EN and that, under reasonable grid regularity assump-
tions, #EI is the dominant part of #E as #T →∞. Thus,F → 5 as #T →∞.

Remark 3.8. The coefficient matrixA
◦

is a bordered matrix with major block consisting
of the standard piecewise linear finite element stiffness matrixA, and with the width of
the bordernC − 1, wherenC is the number of disconnected components in the Neumann
boundary0N . If nC = 1, thenA

◦ = A. In general, systems of this form can be solved by
standard block elimination algorithms usingnC solves withA.

The average number of nonzero entries ofA per row approaches 7 as the number of
unknownsn in A tends to infinity and the bandwidth (which depends on the ordering
of the degrees of freedom) is in generalO(n1/2). In comparison, for the matrix in the
coupled system (3.3), the average number of nonzero entries per row approaches 5.4 and
the bandwidth is stillO(n1/2) (see [35] for details).

On the other hand, under reasonable grid regularity assumptions, the condition number
of A is O(n) and the coupled matrix does have a better condition number(O(n1/2) in fact).
However, sinceA is SPD, we can apply preconditioned conjugate gradients, and a range of
optimal preconditioners are available which ensure in theory that the number of iterations
does not grow asn increases. (In Section 4 we present a parallel implementation where
the number of iterations grows withO(n1/6).) To solve system (3.3) on the other hand, we
would have to fall back on other Krylov subspace methods such as MINRES [31]. Here (in
the unpreconditioned case) the number of iterations can only be expected to grow no faster
than the condition number of the matrix (i.e.,O(n1/2) and optimal preconditioners are not
readily available (see [35] for details). So from several points of view, the reduction to SPD
makes practical sense.

4. PARALLEL ITERATIVE METHOD

In this section we briefly describe our parallel solver for the velocity systems (3.8) arising
in Section 3. Our method is based on the conjugate gradient algorithm with additive Schwarz
preconditioner and uses the implementation provided by theDOUG package [20] for general
unstructured systems. Although the applications in the present paper are on uniform meshes,
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this uniform structure is not exploited in the solver and so the computing times reported
should be comparable to those required for more general unstructured applications. Also,
although our application here is two-dimensional, we mention that theDOUG code handles
quite general three-dimensional problems. Full details are given in [19, 20].

The first step in our parallelisation involves the partition of the domainÄ (in this case
using the mesh partitioning softwareMETIS [25]) into non-overlapping connected subdo-
mainsÄi , i = 1, . . . , s, each consisting of a union of elements of the mesh. TheMETIS

software strives to ensure that theÄi are of comparable size (“load-balancing”) and the
interfaces between them contain as few edges as possible (to minimise communication).
These subdomains are then used for parallelisation of the vector-vector and matrix–vector
operations required in the conjugate gradient algorithm. Good parallel efficiency is achieved
for matrix–vector products by ensuring that the necessary communication of boundary data
between neighbouring subdomains is overlapped with computations in the (independent)
subdomain interiors.

For preconditioning we use the unstructured version of the classical two-level additive
Schwarz method (e.g., [6]), which has the general form

P−1 := RT
H A−1

H RH +
s∑

i=1

RT
i A−1

i Ri . (4.1)

In (4.1) the matricesA−1
i represent local solves of the underlying PDE on overlapping

extensionsÄ̃i of the Äi with homogeneous Dirichlet condition imposed on the parts of
∂Ä̃i which do not intersect with∂Ä. The restriction operatorRi is taken to be the simple
injection operator.

In our particular implementation of (4.1),Ä̃i is constructed by adding to eachÄi all the
elements of the mesh which touch its boundary∂Äi . The resulting extended subdomains
Ä̃i then have overlapδ, say, withδ bounded above (respectively below) by the maximum
(respectively minimum) diameter of all the elements of the mesh. This choice of overlap
represents a compromise between the competing demands of condition number optimality
and efficiency of the parallelisation (the former requiring, at least in theory, a reasonable
overlap and the latter requiring that the overlap should be as small as possible). This choice
also means thatAi is simply the minor ofA obtained by removing all the rows and columns
corresponding to nodes not onÄi ∪ ∂Äi .

In the present version of theDOUG package the subdomain solvesA−1
i are done using a

direct frontal solver and so, to achieve good efficiency, the underlying subdomains should
not become too large. InDOUG the default size is 1000 degrees of freedom (and this is
what we use in the present paper). Since the package is designed to run on any number of
processors, we allow the possibility that each processor will handle several subdomains.

The preconditioner (4.1) also contains a coarse grid solve,A−1
H , which handles the global

interaction of the subdomains. This distinguishes (4.1) from block-Jacobi-like methods
and is essential for the construction of optimal preconditioners. There is no need for the
coarse mesh to be related directly to the fine mesh, but in principle it should be capable of
representing the solution of the underlying PDE with appropriate accuracy. What this means
in practice is that, if one has constructed a fine mesh which provides a sufficiently good
resolution of the underlying problem, then one requires also a coarse mesh with the same
qualitative properties at the coarser level. Such a coarsening may sometimes be available
(e.g., from an earlier stage of a refinement process) but, since this is not always the case,
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the DOUG package produces a coarsening automatically. For this, an adaptive piecewise
uniform strategy is used, the efficiency of which is discussed in detail in [19]. In (4.1) the
operatorRT

H denotes piecewise linear interpolation from coarse to fine mesh,RH denotes
its transpose, andAH is the Galerkin productAH = RT

H ARH .
In the present version ofDOUG the coarse mesh problem is assembled and solved directly

using the frontal method on a master processor. In order to maintain efficient parallelisation,
the time for this should not exceed the time which is being taken by the processors which
are working on the subdomain solves. Ifn denotes the total number of degrees of freedom
in the problem andnp is the number of processors then (assuming load balancing) each
processor has to solven/(1000∗ np) problems, each with 1000 unknowns. The cost of a
frontal solve for a finite element problem withN degrees of freedom (in 2D) is about 8N3/2

(see the references in [19]). Thus, for parallel efficiency the dimension of the coarse grid
problemnH is chosen inDOUG to satisfy

n3/2
H = cost of solving subproblems on processors=

(
n

(1000∗ np)

)
∗ 10003/2. (4.2)

Note that for a fixednp this implies thatnH = O(n2/3).
The asymptotic performance of the preconditioner (4.1) is analysed in [6], where it is

shown that for general symmetric positive definite problems

κ(P−1A) = O((H/δ)2), asH, h→ 0 (4.3)

whereκ denotes the 2-norm condition number,h, H denote the fine and coarse mesh
diameters, andδ denotes the overlap in the subdomainsÄ̃i .

Then with theDOUG code as described above applied to a problem on a uniform fine
meshn ≈ h−2, the overlap isδ = h ≈ n−1/2 and the coarse mesh (which will be almost
uniform) hasnH = O(n2/3) degrees of freedom and diameterH ≈ n−1/2

H = O(n−1/3). The
estimate (4.3) then reduces toκ(P−1A) = O((n1/2n−1/3)2) = O(n1/3) and the number of
iterations of the conjugate gradient method will grow no faster thanO(n1/6). We examine
numerically in the following section the sharpness of this estimate.

We shall also discuss the performance of this method in the presence of very rough
coefficients. A lot is known about this case provided the jumps occur on a coarser scale
than the fine mesh being used to compute the solution. In the case of certain two-level
domain decomposition methods on structured meshes, for example, the effect of the jumps
can be removed completely provided the coarse mesh resolves the jumping regions. In the
unstructured case this is no longer true, indeed the preconditioned problem may be just
as ill-conditioned as the original matrix as the jumps worsen. An example showing this
was given in [15, 16], where it is also shown that the condition number is not a very good
guide in this case to the behaviour of the preconditioned conjugate gradient (PCG) method,
since the preconditioned problem has only a small cluster of eigenvalues near the origin
with the others lying in a bounded region away from the origin as the jumps get worse.
The general proof of this phenomenon led in [15, 16] to the proof that the corresponding
PCG method in fact is very resilient to jumping coefficients even in the unstructured case.
Roughly speaking [15] shows that in the case of a piecewise constant coefficientk with
respect to a fixed number of regions of the domain, the number of PCG iterations will grow
only logarithmically in the quantity max|k|/min|k|, whereas the condition number itself
generally grows linearly in max|k|/min|k|.
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The results in [15, 16] apply when the jumping coefficient varies on a coarser scale than
the fine mesh and so they do not strictly apply to the case of the heterogeneous media
considered in the next section, where the coefficient varies on the fine mesh scale. However,
interestingly, the numerical results given below indicate that in some sense the results of
[15, 16] hold true even in this extreme case, although at the time of writing we know of no
proof of this.

5. NUMERICAL RESULTS

In this section we report on a number of experiments on the parallel solution of (1.1),
(1.2) in the special case when the domainÄ is [0, 1]× [0, 1], the viscosityµ is taken to be
1, and the permeabilityk is chosen so that logk is a realisation of a Gaussian random field
onÄ (as described in Section 2) with zero mean, varianceσ 2, and length scaleλ.

We discretise this problem using the mixed finite element discretisation with lowest order
Raviart–Thomas elements as described in Section 3 on a uniform meshT on Ä obtained
by first subdividing the mesh intoN2 equal squares [(i − 1)/N, i /N] × [( j − 1)/N, j/N]
and then further subdividing each square into two triangles. This is done by colouring the
squares in a red/black checkerboard pattern and then using a diagonal drawn from bottom
left to top right for red squares and from top right to bottom left for black squares. We replace
k on each element with its constant interpolant at the centroid of the element, an approach
which allows an efficient implementation and maintains the accuracy of the discretisation
(see [9, Appendix]). This approach only makes statistical sense when the length scaleλ is
of the order of the mesh diameter, equivalently

λ = C`/N, (5.1)

for some constantC` ≥ 1, asN →∞. However, sinceN must already be large enough to
ensure acceptable accuracy (i.e.,N ∼ 103, or 104), fairly fine length scales are treatable by
this choice, and it is widely used in hydrogeological modelling. Smaller length scales could
be treated by an appropriate upscaling ofk in each element, but this would be expensive and
can be expected to have only minor effect on the dispersion in the velocity field, which is the
main phenomenon of interest here. So, throughout this section,k is replaced by its piecewise
constant interpolant̃k, which is computed using the turning bands algorithm [28, 37].

We assume that there is zero flow across the bottom and top ofÄ and that the residual
pressurep is required to have value 1 at the left-hand boundary and 0 at the right-hand
boundary (corresponding to a prescribed pressure gradient across the domain). Thus, in
(3.1) we have0D = {0, 1} × (0, 1) and

g(Ex) ≡ 1 for Ex ∈ {0} × [0, 1], g(Ex) ≡ 0 for Ex ∈ {1} × (0, 1). (5.2)

We shall give results here only for the computation of the velocityq in (3.3) by solving
the decoupled system (3.8) forq◦ . In the case of the particular boundary conditions (5.2),
the computation reduces to the solution of the linear system

[
A c

cT d

][
η
◦

ρ
◦

]
=
[
ϕ
◦

ξ
◦

]
, (5.3)
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whereA is a square sparse matrix, and (since0N here contains only two components)c is
a single column vector andd is a scalar. All of these are obtained by elementary row and
column operations on a standard piecewise linear finite element matrix (see Section 3.3).
Block elimination in this case requires solutions of two systems of the form

Au = b. (5.4)

In the special case here, where the Dirichlet datag is constant on each component of0D, it
turns out thatϕ◦ = 0 and we only need to solve (5.4) once. The timings in Section 5.2 are
for this task.

The sparse, SPD, and highly ill-conditioned problem (5.4) is solved by the parallel
iterative method described in Section 4. There are three parameters which determine the
difficulty of (5.4): the mesh parameterN, the varianceσ 2, and the length scaleλ. We are
interested in the efficiency of this parallel method as well as its robustness with respect
to these parameters. For our tests we allowσ 2 to vary independently, andλ to vary as in
(5.1) for some constantC` to be specified below. From a numerical point of view these
are particularly difficult problems, since the realisation ofk varies from element to element
and may take wildely differing values across the domain. AsC` decreases, the probability
of large jumps ink between neighbouring elements increases (see Section 2). On the other
hand, to illustrate the effect of increasingσ 2, in Fig. 2 we give a gray scale plot of the values
of logk for a single realisation in the caseN = 256 andλ = 10/N for two different values of
σ 2. Observe that the pattern is independent ofσ 2, but that the scale changes asσ 2 increases.
In fact the numerical range of logk grows linearly in

√
σ 2, and so the condition number

κ of the matrixA will grow like exp (2
√

σ 2) asσ 2 increases. To emphasise the effect that
this will have on the conditioning of (5.4) observe, for example, that max|k|/min |k| ∼ 109

whenσ 2 = 8.

5.1. Selection of Stopping Criterion

Since we have in mind here the solution of a range of problems of varying difficulty by
an iterative method, it is important to design a stopping criterion which ensures reasonably
uniform accuracy across all problems. This ensures that subsequent comparison of solution
times will be meaningful. In this section we describe a heuristically based approach to
designing such a stopping criterion.

The preconditioned conjugate gradient (PCG) method for (5.4) with SPD preconditioner
P produces a sequence of iteratesui and residualsr i which satisfyr i = b− Aui = Aei where
ei = u− ui is the error at thei th iterate. This algorithm also computes thepreconditioned
residualzi = P−1r i = (P−1A)ei . Typical stopping criteria for the PCG method involve
requiring thatzi be small in some norm. More precisely we have the standard estimate for
the relative error reduction

‖ei ‖2/‖e0‖2 ≤ κ‖zi ‖2/‖z0‖2, (5.5)

whereκ denotes the condition number ofP−1A with respect to‖ · ‖2. From this it follows
that the stopping criterion

‖zi ‖2/‖z0‖2 ≤ ε/κ (5.6)

is sufficient to ensure the required relative error reduction‖ei ‖2/‖e0‖2 ≤ ε.
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FIG. 2. Gray scale plot of log(k) for σ 2 = 1 (top) andσ 2 = 8 (bottom).

Of courseκ is unknown and some authors (e.g., [26]) suggest estimatingκ dynamically
during the CG iteration. However, even if such a procedure is adopted, the resulting stopping
criterion (5.6) is often over-pessimistic due to the fact that the smallest constantκ such that
(5.5) holds for alli is often very much smaller than the true condition number ofP−1A.

Here we are interested in a class of problems which depend on parametersσ 2, N, andλ.
For a restricted range of problems (which are small enough so that the exact solution can
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be computed by a direct solver), we compute theeffective condition number,

κ̃ := κ̃(σ 2, N, λ) := ‖e
i ‖2
‖e0‖2

‖z0‖2
‖zi ‖2 , (5.7)

for some specifiedi as the parametersσ 2, N, andλ change. Our practical stopping criterion
is then to choose the firsti such that

‖zi ‖2
‖z0‖2 ≤ ε/κ̃. (5.8)

The result of this exercise is that ˜κ is found to vary only very mildly with these parameters
(see (5.9) below).

To obtainκ̃(σ 2, N, λ) experimentally, we solved the test problems using the conjugate
gradient method with additive Schwarz preconditioner as described in Section 4, with initial
guessu0 = 0, and we iterated until the relative error‖ei ‖2/‖e0‖2 was less thanε = 10−4

(with the exact solutionu found using a direct solver). From this solution we computed ˜κ

above.
First, we studied the variation with respect toσ 2, and here we fixedN = 32 andλ =

10/N. In Fig. 3 (left) we plot computed values of ˜κ againstσ 2 (solid line). The best least
squares straight line fit to these points (dotted line) yields an empirical approximation for
the variation of ˜κ with σ 2 as: 0.26+ 0.13σ 2. To test the validity of this, we recomputed the
above experiments using the stopping criterion (5.8) with ˜κ = 0.26+ 0.13σ 2 andε = 10−4.
The relative error‖ei ‖2/‖e0‖2 remained in the interval [2× 10−5, 1.4× 10−4] asσ 2 ranged
between 1 and 8, indicating that this is a reasonable approximation of how ˜κ varies withσ 2.

To study variation with respect toλ, we setN = 32 andσ 2 = 4 and computed ˜κ for
λ = 10/16, 10/32, . . . , 10/1024. A log2− log2 plot of these results is given in Fig. 3 (right)
(solid line). The dotted line shows the best computed straight line fit and suggests that ˜κ

decreases withO(λ−0.4) asλ increases. From this observation we propose the empirical
modelκ̃ = (0.26+ 0.13σ 2)(0.46λ−0.4). To demonstrate the validity of this we recomputed
these experiments using this value of ˜κ in stopping criterion (5.8) whereσ 2 = 4, N = 32,
andε = 10−4. We found that the resulting relative error lay in the range [6× 10−5, 1.4×
10−4] indicating a stopping criterion which is robust to variations inλ.

Finally, to model variations with respect toN we computed ˜κ in (5.7) for N = 16, 32,
64, 128 in the caseσ 2 = 4 andλ = 10/16. These experiments suggested that there is no

FIG. 3. Variation of κ̃ with σ 2 (left) and withλ for σ 2 = 4 (right) (N = 32).
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TABLE I

Study of the Iteration Count (λ = 10/N)

With coarse grid Without coarse grid

N n σ 2 No. It. ‖zi ‖2/‖z0‖2 No. It. ‖zi ‖2/‖z0‖2

128 16383 1 21 7.72× 10−10 123 1.80× 10−9

2 22 1.20× 10−9 137 1.18× 10−9

4 26 5.67× 10−10 174 8.14× 10−10

6 29 6.98× 10−10 198 6.82× 10−10

8 33 3.97× 10−10 223 4.22× 10−10

256 65535 1 23 9.52× 10−10 270 1.33× 10−9

2 26 7.82× 10−10 320 1.09× 10−9

4 31 5.47× 10−10 454 6.67× 10−10

6 34 5.58× 10−10 602 5.57× 10−10

8 41 3.81× 10−10 740 3.76× 10−10

512 262143 1 27 4.45× 10−10 593 1.10× 10−9

2 29 7.87× 10−10 742 8.34× 10−10

4 38 4.94× 10−10 1155 5.48× 10−10

6 46 4.33× 10−10 1677 4.13× 10−10

8 57 2.64× 10−10 >2000

1024 1048575 1 33 3.44× 10−10 1059 8.74× 10−9

2 35 6.40× 10−10 1598 6.46× 10−9

4 45 4.15× 10−10 >2000
6 57 3.12× 10−10 >2000
8 70 1.74× 10−10 >2000

noticeable increase in the value of ˜κ asN increases. Thus, we postulate that

κ̃(σ 2, N, λ) ≈ (0.26+ 0.13σ 2)(0.46λ−0.4) (5.9)

asσ 2, λ, andN vary. In the experiments in the next section we use this formula for ˜κ in the
stopping criterion (5.8).

5.2. Performance of Iterative Method

Our first set of results in Table I, illustrates the performance of the PCG method for
(5.4) with an additive Schwarz preconditioner (4.1), with and without coarse grid solve for
various values ofN andσ 2, where the length scaleλ varies as in (5.1) withC` = 10, and
n denotes the number of unknowns in system (5.4). The stopping criterion was (5.8) with
ε = 10−9 andκ̃ given by (5.9). The value of‖zi ‖2/‖z0‖2 given is the value of this quantity
when the iteration stops (wherezi denotes the preconditioned residual, as described above).

TABLE II

Number of Iterations asN (and Thereforen) Increases (λ = 10/N,σ2 = 2)

N n With coarse grid Without coarse grid

256 65535 26 320
512 262143 29 742

1024 1048575 35 1598
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TABLE III

Number of Iterations asσ2 Increases (N = 256,λ = 10/N)
√

σ 2 With coarse grid Without coarse grid

1 23 270
1.4 26 320
2 31 454
2.4 34 602
2.8 41 740

The first thing to note is the observed success of the strategy for computing the coarse grid
(see Section 4). Since this is constructed just from thegeometryof the fine grid, ignoring the
fact that the coefficientk is varying from element to element, on may be concerned that it
may not model the underlying fine scales of the problem well enough to be effective. While
there is clearly some dependence on the fine scale of the coefficient (the iteration numbers
increase slightly asσ 2 increases) this dependence is mild (see below) and the addition of the
coarse grid solve is clearly having a big effect on the robustness of the preconditioner. In the
caseN = 512 andσ 2 = 8, the addition of the coarse grid solve improved the computation
time by a factor of about 30.

In the next two tables we investigate the robustness of the iterative method with respect
to the various parameters in the problem in more detail. First, in Table II we investigate
the behaviour of the method asN grows. We know from the discussion in Section 4 that,
for a fixed smooth coefficient function, as N (and thereforen) increases, we expect the
number of PCG iterations to grow at worst withO(n1/2) = O(N), when the coarse solve
is not included in the preconditioner, and withO(n1/6) = O(N1/3), when the coarse solve
is included. The results in Table II indicate a growth no worse than this, even though in this
case the coefficient is extremely rough.

In Table III we illustrate how the iteration numbers are affected by growth inσ 2 for N =
256 andλ = 10/N. The rate of growth of the number of PCG iterations is approximately
linear in

√
σ 2. This behaviour is observed both with and without a coarse grid solve,

although with a considerably larger asymptotic constant in the latter case. This should be
compared with the fact that thecondition numberof the stiffness matrixA in (5.4) grows
like exp(2

√
σ 2). This observed behaviour (where the growth of the number of iterations is

logarithmic in the condition number) is exactly as proved in [15, 16] (see Section 4) for
the special case when the number of regions in which the coefficient has a constant value

TABLE IV

Effect of C` on the Iteration Count (N = 512, with Coarse Grid)

C` = 5 C` = 20

σ 2 No. It. ‖zi ‖2/‖z0‖2 No. It. ‖zi ‖2/‖z0‖2

1 29 6.24× 10−10 27 5.87× 10−10

2 34 5.08× 10−10 27 5.69× 10−10

4 46 3.85× 10−10 30 6.51× 10−10

6 62 3.07× 10−10 35 4.19× 10−10

8 82 1.91× 10−10 41 3.37× 10−10
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TABLE V

Effect of Aspect RatioL on Iteration Count

(with Coarse Grid)

L No. It. ‖zi ‖2/‖z0‖2

1 31 5.47× 10−10

4 42 6.01× 10−10

16 50 5.13× 10−10

64 65 7.56× 10−10

is small compared to the number of elements on the fine mesh. Here we have computed
the harder problem where the coefficient has a different value on each element but we still
observe the same good behaviour. It remains an open question to prove this.

Recall that for a physically realistic model we assume (see (5.1)) that the length scale
λ decreases linearly in 1/N. In the previous Tables I–III we tookC` = 10 in (5.1). In
Table IV we illustrate the casesC` = 5, 20. As expected, the smaller value ofC` leads
to neighbouring values ofk being less well correlated, and thus a larger number of PCG
iterations are needed to solve this “rougher” problem.

In groundwater flow calculations in practice it is often necessary to study flows in long
thin regions. In Table V we repeat some of the above calculations for the case when the
domainÄ is [0, L] × [0, 1] and we study the effect of varying the aspect rationL ≥ 1 of the
domain. In the absence of any additional information concerning anisotropy, in general for
such problems we would need to take the same mesh diameter in both coordinate directions
to ensure adequate accuracy. Thus, for each value ofL, we here construct a uniform tensor
product mesh withNL subdivisions along the side [0, 1] andL × NL subdivisions along
the side [0,L]. However, in order to compare problems of the same dimension,NL is
chosen to ensure that the total number of degrees of freedom in the system is fixed atn =
(N + 1) ∗ (N − 1), with N = 256. For these experimentsσ 2 = 4 andλ = 10/256. The
iteration count, asL increases, is given in Table V. A very modest growth withL is observed.

Our final table, Table VI, illustrates the parallel efficiency of the algorithm. To understand
these results, recall that theDOUG solver described in Section 4 is organised on a master/slave
model. In the construction of the preconditioner, the coarse mesh is assembled and solved
on the master processor while the slaves handle the solves on the subdomains. Similarly, in

TABLE VI

Parallel Efficiency on SP2 (σ2 = 2, N = 256,λ = 1/N)

Without coarse grid With coarse grid

No. slaves Time (s) Efficiency Time (s) Efficiency

1 156.71 100% 12.65 100%
2 79.86 98% 6.25 101%
4 43.53 90% 3.15 100%
6 30.22 86% 2.04 103%
8 24.41 80% 1.62 98%

10 20.58 76% 1.34 94%
12 19.35 67% 1.19 89%
14 17.20 65% 1.10 82%



FIG. 4. Vector plot of the velocity forσ 2 = 1, 4, and 8 (N = 256, λ = 10/N).
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the execution of dot and matrix–vector products, the slaves do the local calculations while
the master is responsible for collating global information (see also [19]). In Table VI we
give the parallel efficiency results as a function of the number of slave processors. The
times recorded are those obtained on the 16 node IBM SP2 at the Daresbury Laboratory,
United Kingdom (Peak performance: 20 GFlops/sec per processor). The efficiency column
is computed in each case ast (1)/(st(s)), wheret (s) is the time required by the solver when
s slaves are used. Because of the master-slave set up, it may be argued that to achieve the
timing t (s) we actually uses+ 1 processors. While this is strictly true, it is easily seen that
if we recomputed the efficiencies using the formula 2t (1)/((s+ 1)t (s)), then efficiencies
of well over 100% will result. These figures indicate that there is no bottleneck present in
communication between master and slave. In effect, the bulk of the computation is done
on the slaves and so the figures in Table VI give an accurate impression of the parallel
efficiency of the algorithm.

In Table VI, note especially the improved parallel efficiency of the method with the
coarse grid compared to that without. This indicates the success of the the parallelization
strategy implemented inDOUG: the coarse solve is not only necessary to obtain good theo-
retical results, it also gives much improved timings and efficiency even though in principle
much more communication is needed. The key is the overlapping of communication with
computation implemented inDOUG [19, 20].

Efficiencies of greater than 100% for small numbers of processors are not unusual, due
to cache effects as well as small differences in the actual quality of the solution produced
at the end of the PCG iteration (see also [19]).

Finally, in Fig. 4 we plot the velocity fields corresponding to the problem (1.1) and
(1.2) with boundary conditions (5.2) in the caseN = 256,λ = 10/N, andσ 2 = 1, 4, 8
respectively. Note the increased dispersion in the flow paths asσ 2 increases.
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Note added in proof.After this work was completed, the paper “Mixed Finite Element Methods and Tree–
Cotree Implicit Condensation,” by P. Alotto and I. Perugia [Calcolo36, 233 (1999)], came to our attention. This
paper uses related algebraic techniques to speed up the iterative solution of saddle-point problems. However, the
reduced systems which result there are of Schur-complement type and therefore entirely different from ours.
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30. J. C. Nédélec,Éléments finis mixtes incompressibles pour l’´equation de Stokes dansR3, Numer. Math.39,
97 (1982).

31. C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations,SIAM J. Num. Anal.
12(4), 617 (1975).

32. P. A. Raviart and J. M. Thomas, A mixed finite element method for 2-nd order elliptic problems, inMath-
ematical Aspects of the Finite Element Method, edited by I. Galligani and E. Magenes, Lecture Notes in
Mathematics (Springer-Verlag, New York, 1977), Vol. 606, p. 292.



282 CLIFFE ET AL.

33. M. L. Robin, A. L. Gutjahr, E. A. Sudicky, and J. L. Wilson, Cross-correlated random field generation with
the direct Fourier transform method,Water Resour. Res.29, 2395 (1993).

34. R. Scheichl, A decoupled iterative method for mixed problems using divergence-free finite elements, Bath
Mathematics Preprint 00/11 (University of Bath, 2000).

35. R. Scheichl,Iterative Solution of Saddle-Point Problems Using Divergence-Free Finite Elements with Appli-
cations to Groundwater Flow, Ph.D. thesis, in preparation (University of Bath, 2000).

36. F. Thomasset,Implementation of Finite Element Methods for Navier–Stokes Euations(Springer-Verlag, New
York, 1981).

37. A. F. B. Tompson, R. Ababou, and L. W. Gelhar, Implementation of the three-dimensional Turning Bands
random field generator,Water Resour. Res.25(10), 2227 (1989).

38. C. Wagner, W. Kinzelbach, and G. Wittum, Schur-complement multigrid, a robust method for groundwater
flow and transport problems,Numer. Math.75, 523 (1997).


	1. INTRODUCTION
	2. STATISTICAL MODELLING OF HETEROGENEOUS MEDIA
	3. DISCRETISATION AND REDUCTION TO SPD SYSTEM
	FIG. 1.

	4. PARALLEL ITERATIVE METHOD
	5. NUMERICAL RESULTS
	FIG. 2.
	FIG. 3.
	TABLE I
	TABLE II
	TABLE III
	TABLE IV
	TABLE V
	TABLE VI
	FIG. 4.

	ACKNOWLEDGMENTS
	REFERENCES

